Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states

Author:

Du Ya-Nan ,Xie Wen-Zhong ,Jin Xuan ,Wang Jin-Dong ,Wei Zheng-Jun ,Qin Xiao-Juan ,Zhao Feng ,Zhang Zhi-Ming , , ,

Abstract

A measurement-device-independent quantum key distribution (MDI-QKD) protocol is immune to all detection side-channel attacks and guarantees the information-theoretical security even with uncharacterized single photon detectors. A weak coherent source is used in the current MDI-QKD experiments, it inevitably contains a certain percentage of vacuum and multi-photon pulses. The security issues introduced by these source imperfections can be avoided by applying the decoy state method. Here, through modeling experimental devices, and taking into account the weak coherent source and the threshold detectors, we have evaluated the gain, the probability to get successful Bell measurement and incorrect Bell measurement, and the quantum bit error rate (QBER), given a practical setup. In our simulation, we show how QBER varies with different transmission distances in the cases when the average photon numbers per pulse from Alice and Bob are symmetric and asymmetric. Result shows that the multi-photon pulses do not cause error in the Z basis of polarization encoding scheme, but produce a large QBER in phase encoding scheme and in the X basis of polarization encoding scheme. QBER is affected by the dark count rate and the system optical error associated with the multi-photon pulses. For different encoding schemes, QBER caused by each kind of average photon numbers from Alice and Bob increases to different degrees with the transmission distance, and finally is close to 50%. With the increase of the transmission distance, the average photon number per pulse decreases and the fraction of the dark count rate causing QBER gradually increases. Under the same effect of the dark count rate, the smaller the average photon number per pulse, the bigger the QBER. After a certain transmission and at the same transmission distance, the QBER is largest when average photon numbers used by Alice and Bob are both smallest. For the short distance transmission of phase encoding scheme and the X basis, we find that QBER is larger when average photon numbers from the two arms are asymmetric, as compared to the symmetric case. For the Z basis, the QBER caused by the system optical error and the dark count rate is very small.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3