Author:
Hao Dan-Hui ,Kong Fan-Jie ,Jiang Gang , , ,
Abstract
Density functional (B3LPY) method has been utilized to optimize the possible structures of PuN, PuO, NO and PuNO molecules using the contracted valence basis set (LANL2 DZ) for Pu atom, and the AUG-cc-pVTZ basis set for N and O atoms. It is shown that the ground state of the PuNO molecules has Cv (Pu-N-O) symmetry and the ground electronic state is 6-. The equilibrium nuclear distances for Pu-N and N-O bonds in the PuNO molecules are RPuN=0.22951 nm and RNO=0.12257 nm, and the dissociation energy is De=8.10537 eV. Furthermore, the other two metastable states of the PuNO molecules are also obtained, and the electronic states of the two configurations are 6- and A with Cv (Pu-O-N) and Cs (O-Pu-N) symmetry, respectively. Then the Murrell-Sorbie potential energy functions of the PuN, PuO and NO molecules have been simulated and the analytical potential energy function of the PuNO molecules has been derived using the many-body expansion theory. The contours of the potential energy functions reproduce exactly the most stable equilibrium structures, the two metastable state structures as well as the dissociation energy of the PuNO molecules. The molecular static reaction pathway, based on the potential energy function, is also discussed.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference20 articles.
1. Lu H, Zhu M, Li Q 2002 Journal of Sichuan Normal University (Nature Science) 3 284 (in Chinese) [卢红, 朱明, 李权 2002 四川师范大学学报(自然科学版) 3 284]
2. Li Q, Wang H Y, Zhu Z H 2001 Journal of Atomic and Molecular Physics 4 396 (in Chinese) [李权, 王红艳, 朱正和 2001 原子分子物理学报 4 396]
3. Pepper M, Bursten B E 1991 Chem. Rev. 91 719
4. Gagliardi L, Roos B O 2007 Chem. Soc. Rev. 36 893
5. Valerie V, Peter M, Ulf W, Ingmar G 2006 Them. Chem. Acc. 115 145