A theoretical study on coalescence-induced jumping of partially wetted condensed droplets on nano-textured surfaces

Author:

Liu Tian-Qing ,Sun Wei ,Li Xiang-Qin ,Sun Xiang-Yu ,Ai Hong-Ru ,

Abstract

Partially wetted (PW) droplets specially exist on textured surfaces with proper nano-structural parameters. Such tiny drops can depart from surfaces by coalescence-induced jumping, and become the main medium for dropwise condensation heat transfer. Therefore, it is of great importance to study the relationship between nano-structural parameters and PW drop post-merging jumping. In this study, the principle of minimum energy increasing during condensed droplets growth was used to judge if a condensed drop is in PW state. The initial shape of a coalesced droplet was determined based on the conservation of PW drop interface free energy and viscous dissipation energy before and after two or more PW condensed droplets merge. The dynamic equation describing the shape conversion of the post-coalescence droplet was then solved. Whether jumping or not of a merged drop was determined by whether the base radius of the droplet can reduce to 0 and if existing a up moving speed of drop gravity center at this moment. The calculation results show that PW droplets can form only on the textured-surfaces with certain nano-pillar height and relatively larger ratio between pillar diameter and pitch, dn/s, while completely wetted droplets easily form on the surfaces with low pillar height and dn/s less than 0.1. Meanwhile, post-coalescence jumping of PW droplets closely relates to nano-structural parameters. Not all PW drops can jump after merging. Instead, self-propelled jumping of PW drops takes place only on the surfaces with relatively higher nano-pillar height and suitable dn/s. Moreover, PW drop size and the scale ratio between two PW droplets to merge also have significant effect on the coalescence-induced jumping. It is difficult for a merged drop to jump spontaneously if the size of PW drops is too large or too small, or the scale ratio of two PW drops is too small. Finally, post-coalescence jumping of multi-droplets is easier than that of two drops since more surplus interface free energy exists in the former case. The calculation results of this model are well consistent with the experimental observations in literatures for whether the post-coalescence condensed drops jump on nano-textured surfaces, with accuracy of 95%. In conclusion, coalescence-induced jumping takes place only when PW droplets with suitable size on the textured surfaces with proper nano-structural parameters.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3