Fast self-similar amplification through passive nonlinear pulse pre-shaping

Author:

Wang Si-Jia ,Gu Cheng-Lin ,Liu Bo-Wen ,Song You-Jian ,Qian Cheng ,Hu Ming-Lie ,Chai Lu ,Wang Qing-Yue ,

Abstract

A nonlinear pre-shaper which optimizes initial pulses for self-similar evolution in a following short fiber amplifier is demonstrated. It consists of a pair of transmission gratings and a segment of single mode fiber, by which pulses are shaped temporally and spectrally before amplification. To confirm the benefit of nonlinear pre-shaping for the self-similar evolution, pulse amplifications with and without the nonlinear pre-shaper are simulated. From comparison, pulses optimized by nonlinear pre-shaper show a shorter pulse duration, less pedestal and broader spectrum after amplification and compensation. With this optimization, the self-similar amplification can be realized in a 2.2-meter Yb3+-doped fiber in a large range of pump power, generating 60 fs transform-limited pulses after compression. This nonlinear pre-shaping method can efficiently shorten the fiber length and release the seed quality required for self-similar amplification. An all-normal dispersion mode-locked fiber laser is employed as the seed of a self-similar amplifier for the first time, thus facilitating an all-fiber system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3