Author:
Wang Shuang ,Zheng Hai-Zi ,Zhao Zhen-Ye ,Lu Yue ,Xu Chun-Hua ,
Abstract
The resolution of conventional magnetic tweezers is limited by the Brown motion of magnetic beads. When the force is lower than ~10 pN, the resolution of magnetic tweezers decreases significantly because of the increased Brown motion. To improve the resolution of magnetic tweezers under low forces, we combine the total internal reflection fluorescence techniques with magnetic tweezers, and design a novel single molecule connection: magnetic bead-DNA linker-fluorescent bead-single molecule. With the improved magnetic tweezers, we study the folding dynamics of a DNA hairpin. The results reveal that a nanometer-scale resolution is obtained. By analyzing these results, we calibrate the penetration depth of the total internal reflection field. Finally, we investigate the unwinding dynamics of a BLM helicase core protein. Some preliminary results of the helicase unwinding experiments confirm the practicability of the improved magnetic tweezers in the field of single molecular research.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献