Author:
Luo Yao-Tian ,Tang Chang-Jian ,
Abstract
The effective radius of photonic-band-gap cavity (PBGC) is defined, the validity of using it to treat PBGC as a mode selective cylindrical metal cavity is demonstrated, the guiding role of it in the design of PBGC is revealed, and a self-consistent nonlinear theory is established for gyrotron oscillator with PBGC (PBG gyrotron) based on it. The results of theoretical analysis and numerical calculation show that the azimuthal polarized form (traveling wave or standing wave) of RF field has an obvious effect on the beam-wave interacting process and the device operating at second harmonic can achieve higher electron efficiency than that working at fundamental wave under TE-32 mode, which means PBG gyrotron is capable of operating at both high order electromagnetic mode and high order electronic cyclotron harmonic effectively owing to the excellent mode selective ability of PBGC. This gives a new clue to the research of gyrotron oscillator.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献