Band structures of zigzag graphene nanoribbons

Author:

Wang Xue-Mei ,Liu Hong ,

Abstract

Based on the π-electron tight-binding model, for zigzag graphene nanoribbons(ZGNRs) the influence of boundary structure on band structure, specially the electrons of the valence band and the conductor band near the Fermi level, are studied in detail. We investigate the band structures and the distributions of electrons of different atoms in a unit cell of the valence band near the Fermi level of ZGNRs with seven reasonable boundary structures. We find NN-ZGNRs with no dangling atoms on both edges, DN-ZGNRs with dangling atoms only on one edge, SPP-ZGNRs and ASPP-ZGNRs each with pentagons on both two edges and being metallic, DD-ZGNRs with dangling atoms on both two edges, PN-ZGNRs each with a defective structure of pentagons on one edge and no dangling atoms on the other edge, PD-ZGNRs with a pentagon on one edge and dangling atoms on the other edge being semiconducting, and the energy gap being inversely proportional to the width of nanoribbons. But for DD-ZGNRs and PD-ZGNRs, the energy gaps quickly reduce to zero with the increase of width; for PN-ZGNRs, the energy gaps decrease exponentially to a limited value of 0.154 eV. It is found that different boundary structures have different effects on the distribution of electrons in the valence band near the Fermi level. And the probability for electrons staying in the atoms on two edges of nanoribbons is relatively large.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3