Numerical simulation study on characteristics of gliding arc discharge

Author:

Wang Yu ,Li Xiao-Dong ,Yu Liang ,Yan Jian-Hua ,

Abstract

The arc temperature field, electric field and size of conducting zone of gliding arc plasma are important parameters to determine the temperature and density of the electrons, the chemical reaction rates and energy efficiency. Electrical parameters of a 50 Hz ac gliding arc discharge were measured under conditions of two gas flow rates, 1.43 L/min and 6.42 L/min. An instantaneous model which was used to describe the energy transfer of gliding arc discharge was simplified by using an approximate expression for the electrical conductivity and diffusivity of plasma, which ravelled out the moving boundary in the gliding arc simulation resulting from variation of arc structure. The current density, electric field, dynamic temperature field and the structure of ac gliding arc was calculated. The electric field strength from the simulation result of the model was in agreement with the experimental data. According to the calculational result, the temperature on the axis of arc reached as high as 5700—6700 K. It showed the gas flow directly affected the arc structure and current density, thus further affected the electric field strength and temperature distribution. The electric field strength increased firstly and then decreased during a discharge period.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3