Numerical study on uniformity of electron cyclotron resonance plasma density

Author:

Gao Bi-Rong ,Liu Yue ,

Abstract

Based on drift-diffusion approximation and under axis-symmetric assumption, a two-dimensional(2D) fluid model is established for the plasma in the chamber of electron cyclotron resonance plasma source. A finite difference method is used for self-consistent numerically simulating the model. Numerical results of uniformity evolution of plasma density are obtained. From the analysis of the numerical results, the effects of background gas pressure, microwave power and current in magnetic field coil on uniformity of the plasma density are studied. The results shows that during the initial ionization, the uniformity of electron density is better than that of ion density. During the later ionization, the uniformity of ion density is better than that of electron density. As background gas pressure increases, the uniformities of both electron and ion densities increase, and the uniformity of ion density increases faster. As microwave power increases, the uniformities of both electron and ion densities increase with almost the same rates. As current in magnetic field coil increases, the uniformities of both electron and ion densities increase at almost the same rates. However, when the current in magnetic field coil becomes big enough, the uniformities of both electron and ion densities decrease at almost of same rates.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference14 articles.

1. Asmussen J 1989 J. Vac. Sci. Technol. A 7 883

2. Ning Z Y,Ren Z X 1992 Prog. Phys. 12 38 (in Chinese) [宁兆元、任兆杏 1992 物理学进展 12 38]

3. Erckmann V, Gasparino U 1994 Plasma Phys. Controlled Fusion 36 1869

4. England A C 1984 IEEE Trans. Plasma Sci. 12 124

5. Eldridge O C,England A C 1989 Nucl. Fusion 29 1583

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3