Study on transport characteristics of CNTFET with HALO-LDD doping structure based on NEGF quantum theory

Author:

Liu Xing-Hui ,Zhang Jun-Song ,Wang Ji-Wei ,Ao Qiang ,Wang Zhen ,Ma Ying ,Li Xin ,Wang Zhen-Shi ,Wang Rui-Yu ,

Abstract

A transport model of CNTFET is built by solving the Poisson equation and Schrödinger equation within the non-equilibrium Green's function theory. The simulation method can relate the CNTFET transport properties directly with the chiral index of CNT. For the first time, the influences of single HALO and double LDD (HLL) doping structures on the CNTFET are investigated. The results show that under the same gate-source and drain-source voltages, HLL-CNTFET reduces significantly the leakage current and the subthreshold swing and increases on-off current ratio as compared with conventional CNTFET, indicating that this new structure has better gate control ability than conventional CNTFET. HLL-CNTFET possesses a smaller drain-source conductance so that it is more suitable for analog integrated circuits application, and has a smaller threshold voltage shift so shat it can better suppress DIBL effect. The increase of channel electric field strength near the source is beneficial to the increase of the electron transport rate; and the reduction in electric field near the drain is more conductive to the suppression of hot electron effects. This study is helpful for understanding the working mechanism and exploring new features of CNTFET.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference24 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3