Fabrication of ZnO nanowire-silicon pyramid hierarchical structure, and its self-cleaning

Author:

Wu Yi-Zhi ,Xu Xiao-Liang , ,

Abstract

The transmittance diminishment of solar cells, caused by dust accumulation is higher than 52.54% every year (2006 Energ. Convers. Manage. 47 3192), which greatly reduces their overall efficiencies of power conversion. Any other strategy for improving the photovoltaic device cannot compensate for this loss caused by the dust. However, this critical issue has not received much attention. In this work, a kind of self-cleaning coating consisting of ZnO nanowire-silicon pyramid hierarchical structures is proposed to overcome the dust accumulation on the photovoltaic device. The principle of designing this self-cleaning is based on the Cassie-Baxter theory. Both the micron size effect for superhydrophobicity and the performance of anti-reflection of light of the substrate should be retained, which are the requirements of application of solar cell. The pyramid-like silicon (named silicon pyramid, hereafter) is fabricated by simple chemical etching. The effects of isopropanol, KOH, etching time, and etching temperature on the morphology of the silicon pyramid are investigated by using systematic statistical design and analysis method, to obtain the best distribution and size of the silicon pyramid. In the systematic statistical design and analysis method, the pick-the-winner rule is adopted. Eventually, we find that the optimized conditions for etching silicon pyramid (according the requirements of self-clean) are as follows: etching time is 60 min, etching temperature is 95℃, and mixture is 80 mL DI water, 2.9598 g KOH and 20 mL isopropanol. Moreover, ZnO nanowire-silicon pyramid hierarchical structures for the application of photovoltaic device are successfully hydrothermally grown on the substrate of silicon pyramid for the first time. The obtained self-cleaning coating consists of ZnO nanowire (with a diameter of 136 nm) and silicon pyramid (with a size of 8-11 m). The surface of this coating possesses superhydrophobic properties, i.e., a water contact angle of 154 and a contact angle hysteresis of less than 10, after being modified by heptadecafluorodecyltrimethoxysilane. Also, our obtained ZnO nanowire-silicon pyramid hierarchical structures have quite a good performance of anti-reflection, which appear gray in the normal environment. And the mechanism for it is postulated. Importantly, some new phenomena, such as high temperature improving the growth of silicon pyramid, are also revealed. Besides, the physical mechanism for high temperature improving the growth of silicon pyramid and anisotropic etching of silicon substrate is discussed. It is indicated that the anisotropic behavior is attributed to small difference in energy level (being a function of the crystal orientation) between the back-bond surface states. The method we proposed to achieve self-cleaning coating is versatile, reliable and low-cost, which is also compatible with contemporary micro-and nano-fabrication processes.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3