Detection of the binary optical element based on ptychography

Author:

Wang Lei ,Dou Jian-Tai ,Ma Jun ,Yuan Cao-Jin ,Gao Zhi-Shan ,Wei Cong ,Zhang Tian-Yu , ,

Abstract

Due to the extremely high diffractive efficiency and flexible design freedom, binary optical element can realize specific function in the optical system in comparison with the traditional refractive optical element. Ptychography, which is a typical lensless optical imaging technology with simple structure, has the advantages of the extensible imaging range and high resolution. The topography of binary optical element can produce the phase difference between the illumination and transmission fields. The features of binary optical element are based on the complex amplitude modulation. So we can obtain the complex transmission function by using ptychography to realize the phase retrieval. In this paper, we propose a detection method for binary diffractive optical element based on ptychography. An improved ptychography optical system is designed by using the combination of variable aperture and lens to control the illumination field. Because the illumination field is a diverging spherical wave, the diffractive patterns can avoid the high contrast and the reconstruction result will contain more details of the sample. The proposed method can not only inspect a large region of the binary optical element, but also calibrate its feature size, such as step height. Compared with the traditional binary optical element detection methods, the proposed method can simplify the system structure, and it can be applied to special environment by using lensless imaging technology. The increasing of the diffraction pattern numbers can acquire the topography of the large size sample and improve the detection efficiency. Taking a phase step plate for sample, the simulations are conducted to analyze the influences of step height and noise on the recovery result. The results show that the detection range of step height is less than 1.5. We can realize a preferable sample reconstruction when the noise of diffraction pattern is less than 5%. A computer-generated holography (CGH) is reconstructed by using the extended ptychographic iterative engine. The diameter of illumination filed is selected to be about 2 mm in order to obtain a large detection region of the sample. The surface micro topography of CGH can be shown through the m 1.98 mm1.98 mm recovery result. More details can be obtained by changing the diameter of illumination filed about 1.6 mm. The recovery result is quite accurate and the error of step height is less than 30 nm compared with the result of white light interference detection. The simulation and experimental results verify the feasibility of this method. When the requirement for accuracy is not extremely high, the proposed method can obtain a satisfactory image quality. In addition, we hope to improve the proposed method, which can be more accurate to detect different types of optical elements in the future research.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3