Improvement on the efficiency of up-conversion infrared photodetectors using surface microstructure

Author:

Wang Chao ,Hao Zhi-Biao ,Wang Lei ,Kang Jian-Bin ,Xie Li-Li ,Luo Yi ,Wang Lai ,Wang Jian ,Xiong Bing ,Sun Chang-Zheng ,Han Yan-Jun ,Li Hong-Tao ,Wang Lu ,Wang Wen-Xin ,Chen Hong , ,

Abstract

In recent decades, infrared (IR) detection technology has been widely used in many fields such as weather monitoring, environmental protection, medical diagnostics, security protection, etc. With the progress and mature of the technologies, more attention has been paid to the imaging detections of weak IR signals. So the higher efficiency of the device is required. Moreover the next-generation IR photodetection technology focuses on large-scale, high-speed and low-dark-current imaging. The mechanical bonding between infrared detector chip and silicon readout circuit inevitably causes a thermal mismatch problem. Up-conversion IR photodetectors can solve the problem about the performance deterioration of photodetector and the thermal mismatch with silicon-based readout circuit, hence they have great advantages in realizing large-format focal plane array detection.However, the poor light extraction efficiency due to total reflection severely restricts the overall efficiency of the up-conversion device, which has become one of the bottlenecks to improve the device efficiency. In this paper, surface microstructures with micro-pillar morphology are designed and fabricated on quantum-cascade up-conversion IR photodetectors. The effect on the up-conversion efficiency is investigated by enhancing the light extraction efficiency.Firstly, by the optical ray retracing method, the influence of surface microstructure on light extraction efficiency is studied when considering different morphology parameters, and optimized surface microstructure is designed to possess a pillar base length of 150 nm, height of 105 nm and side wall angle of 75.Then based on the results of simulation, up-conversion IR photodetectors with surface microstructures are fabricated using polystyrene nanospheres as mask. The self-assembled monolayer nanospheres are first etched to a proper size by using O2 plasma, then the patterns are transferred to SiNx film, which acts as an ICP dry etching mask of the micro-pillars. Finally, the up-conversion device and a silicon detector are together loaded on a cold finger of a cryogenic dewar. The characteristics of the up-converter and up-conversion system are evaluated using a blackbody source.The experimental results show that the devices with and without surface microstructure exhibit similar IR responses and dark currents, while the emission of device with microstructure is obviously increased. Taking into consideration other factors related to external quantum efficiency, the light extraction efficiency of the device with micro-pillar structure on surface can be increased by up to 130%. Therefore it can be concluded that this method is an efficient way to improve the efficiency of up-conversion IR photodetector. The finding in this paper can also be applied to other semiconductor device with light extraction efficiency.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3