Functional coupling analyses of electroencephalogram and electromyogram based on variational mode decomposition-transfer entropy

Author:

Xie Ping ,Yang Fang-Mei ,Li Xin-Xin ,Yang Yong ,Chen Xiao-Ling ,Zhang Li-Tai , ,

Abstract

The functional corticomuscular coupling (FCMC) is defined as the interaction, coherence and time synchronism between cerebral cortex and muscle tissue, which could be revealed by the synchronization analyses of electroencephalogram (EEG) and electromyogram (EMG) firing in a target muscle. The FCMC analysis is an effective method to describe the information transfer and interaction in neuromuscular pathways. Forthermore, the multiscaled coherence analyses of EEG and EMG signals recorded simultaneously could describe the multiple spatial and temporal functional connection characteristics of FCMC, which could be helpful for understanding the multiple spatial and temporal coupling mechanism of neuromuscular system. In this paper, based on the adaptively decomposing signal into frequency band characteristis of variational mode decomposition (VMD) and the quantitatively detecting the directed exchange of information between two systems of transfer entropy (TE), a new methodvariational mode decomposition-transfer entropy (VMD-TE) is proposed. The VMD-TE method could quantitatively analyze the nonlinear functional connection characteristic on multiple time-frequency scales between EEG over brain scalp and surface EMG signals from flexor digitorum surerficialis, which are recorded simultaneously during grip task with steady-state force output.In this paper, application of VMD-TE method consists of two steps. Firstly, the EEG and EMG signals are adaptively decomposed into multi intrinsic mode functions based on variational mode decomposition method, respectively, to describe the information on different time-frequency scales. Then the transfer entropies between the different timefrequency scales of EEG and EMG are calculated to describe the nonlinear corticomuscular coupling characteristic in different pathways (EEGEMG and EMGEEG), to show the functional coupling strength (namely VMD-TE values). finally, the maximum VMD-TE values between the different time-frequency scales of EEG and EMG signals among the eight subjects are selected, to describe the discrepancies of FCMC interaction strength between all time-frequency scales. The results show that functional corticomuscular coupling is significant in both descending (EEGEMG) and ascending (EMGEEG) directions in the beta-band (15-35 Hz) in the static force output stage. Meanwhile, the interaction strength between EEG signal and the gamma band (50-72 Hz) of EMG signal in descending direction is higher than in ascending direction. Our study confirms that the beta oscillations of EEG travel bidirectionally between sensorimotor

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3