Crises in a non-autonomous fractional-order Duffing system

Author:

Liu Xiao-Jun ,Hong Ling ,Jiang Jun , ,

Abstract

In this paper, the crises in a non-autonomous fractional-order Duffing system are investigated. Firstly, based on the short memory principle of fractional derivative, a global numerical method called an extended generalized cell mapping (EGCM), which combines the generalized cell mapping with the improved predictor-corrector algorithm, is proposed for fractional-order nonlinear systems. The one-step transition probability matrix of Markov chain of the EGCM is generated by the improved predictor-corrector approach for fractional-order systems. The one-step mapping time of the proposed method is evaluated with the help of the short memory principle for fractional derivative to deal with its non-local property and to properly define a bound of the truncation error by considering the features of cell mapping. On the basis of the characteristics of the cell state space, the bound of the truncation error is defined to ensure that the truncation error is less than half a cell size. For a fractional-order Duffing system, boundary and interior crises with varying the derivative order and the intensity of external excitation are determined by the EGCM method. A boundary crisis results from the collision of a chaotic (or regular) saddle in the fractal (or smooth) basin boundary with a periodic (or chaotic) attractor. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes a chaotic attractor to occur, and simultaneously the previous attractor and the unstable chaotic set are converted into a part of the chaotic attractor. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause the chaotic set to have a sudden discontinuous change. Here the chaotic set involves three different kinds of chaotic basic sets: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. The results further reveal that the EGCM is a powerful tool to determine the global dynamics of fractional-order systems.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference30 articles.

1. Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press) pp1-150

2. Mandelbrot B B 1982 The fractal geometry of nature (San Francisco: W H Freeman) pp1-32

3. Bagley R L, Torvik P J 1983 J. Rheol. 27 201

4. Bagley R L, Torvik P J 1983 Aiaa J. 21 741

5. Bagley R L, Torvik P J 1985 Aiaa J. 23 981

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3