Superconductivity and negative temperature coefficient of the resistivity of bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5
-
Published:2004
Issue:3
Volume:53
Page:844
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Li Yong ,Wen Ping ,Liu Zhen-Xing ,Jing Xiu-Nian ,Wang Wan-Lu ,Bai Hai-Yang ,
Abstract
Electrical-resistivity measurements between 1.5 K and 300 K were performed on the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glasses (BMGs) before and after annealing. Results of the superconducting transition temperature measurements are presented for the BMG Zr46.75Ti8.25Cu7.5Ni10Be27.5. The superconducting critical temperature Tc is 1.84K for the as-prepared metallic glassy sample and 3.76K for the annealed sample at zero magnetic fields. The as-prepared metallic glassy sample exhibits negative temperature coefficient of the resistivity in the temperature range from 5 to 300 K. The negative temperature coefficient of the resistivity of the as-prepared metallic glassy sample can be reasonably understood with the extended Faber-Ziman theory in terms of the diffraction model for metallic glasses if it is assumed that Zr, Ti, Cu, Ni and Be contribute 1.5, 1.5, 0.5, 0.5 and 2 conduction electrons, respectively. The R(T) of the BMG Zr46.75Ti8.25Cu7.5Ni10Be27.5 over the temperature range from 5 to 300 K was analyzed by fitting it to a polynomial using a least-squares procedure.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献