Simulation study of effects of cooling rate on evolution of micro-cluster structures during solidification of liquid Pb

Author:

Zhou Li-Li ,Liu Rang-Su ,Hou Zhao-Yang ,Tian Ze-An ,Lin Yan ,Liu Quan-Hui ,

Abstract

A tracing simulation has been performed for the solidification of liquid Pb at six different cooling rates by molecular dynamics method. The pair distribution function g(r) curves, the bond-type index method of Honeycutt-Andersen(HA), the cluster-type index method and average coordination numbers have been used to analyze the evolution of micro-cluster structures during solidification processes. The results show that there is a critical cooling rate (in the range of 1×1013 and 5×1012 K·s-1) for forming amorphous or crystal structure. When the cooling rate is higher than the critical cooling rate, amorphous structures are formed mainly with the 1551,1541 and 1431 bond-types. When the cooling rate is lower than the critical cooling rate, the crystal structures mainly with the 1441 and 1661 bond-types or the bcc basic cluster (14 6 0 8 0 0) are firstly formed, and keep stable for a period of time, and then rapidly transform to the partial crystalline structure mainly with the 1421 and 1422 bond-types, or the fcc basic cluster (12 0 0 0 12 0) and the hcp basics cluster (12 0 0 0 6 6) coexisting in a certain proportion . At the same time, it has been found that there are obvious effects of the cooling rate on the relative proportion of the fcc basic clusters to the hcp basic clusters, the smaller the cooling rate is, the bigger relative proportion of the fcc basic cluster, and the system tends to form highly perfect fcc crystal structure.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3