Mechanical modulation effects of gold electrodes on geometries and electronic transport properties of azobenzene molecular junctions

Author:

Yan Yan,Sun Feng,Yang Zhi,Kong Cheng-Yu,Ge Yun-Long,Chen Deng-Hui,Qiu Shuai,Li Zong-Liang,

Abstract

The azobenzene molecular junction has aroused much interest of scientists due to its switching property arising from its photoinduced isomerism. Owing to the existence of the cis and trans isomers, the electronic transport properties of the azobenzene molecules are promised to show significant differences. The experimental investigations indicate that the cis azobenzene molecule commonly shows high conductance, while the trans azobenzene molecule shows low conductance. However, the computations give the opposite results. To reveal this significant difference, the effects of electrode mechanical modulation on the geometries and electronic transports of the azobenzene molecules are studied. The effects of the electrode geometries on the electronic transports of the azobenzene molecular junctions are also investigated. The electrode compressing process and the electrode stretching process of the azobenzene molecular junctions are simulated based on the first principles calculations. The electronic transport properties are further calculated by using non-equilibrium Green’s function (NEGF) method. The numerical results show that the structures of the cis and trans azobenzenes with sulfur anchors are stable in the stretching process and compressing process of electrode. For the cis azobenzene molecular junction, the cis geometry remains unchanged until the electrode distance is stretched to about 0.1 nm longer than the stable electrode distance of the trans azobenzene molecular junction. Though the trans azobenzene molecule is bent when squeezed by the electrodes, the C—N—N—C dihedral still maintains its trans structure even when the electrode distance is compressed to about 0.2 nm shorter than the stable electrode distance of the cis azobenzene molecular junctions. It is intriguing that the conductance values of cis and trans azobenzene molecular junctions vary inversely with the electrode distance. The conductance value of the cis azobenzene molecular junction increases with the elongating of the electrode distance, while the conductance value of the trans azobenzene molecular junction increases with the compression of the electrode. The conductance is very sensitive to the electrode distance for both the cis azobenzene molecular junction and the trans azobenzene molecular junctions, which can change more than 10 times with the change of the electrode distance. In the lower bias regime, the conductance of the trans azobenzene is higher than that of the cis one if the two electrodes are planar. However, when the molecule is sandwiched between two pyramid-shaped electrodes, the condutance of the cis azobenzene is higher. Thus, the higher conductance of cis azobenzene may be caused either by the pyramid-shaped electrodes or by the large electrode distance.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3