Nonequilibrium steady-state transport properties of magnons in ferromagnetic insulators

Author:

Yang Dong-Chao,Yi Li-Zhi,Ding Lin-Jie,Liu Min,Zhu Li-Ya,Xu Yun-Li,He Xiong,Shen Shun-Qing,Pan Li-Qing,John Q. Xiao, , , ,

Abstract

Understanding nonequilibrium transport phenomena in bosonic systems is highly challenging. Magnons, as bosons, exhibit different transport behavior from fermionic electron spins. This study focuses on the key factors influencing the nonequilibrium transport of magnons in steady states within magnetic insulators by taking Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> (YIG) for example. By incorporating the Bose-Einstein distribution function with a non-zero chemical potential <inline-formula><tex-math id="M15">\begin{document}$ {\mu }_{m} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M15.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M15.png"/></alternatives></inline-formula> into the Boltzmann transport equation, analytical expressions for transport parameters in power of <inline-formula><tex-math id="M16">\begin{document}$ \alpha $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M16.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M16.png"/></alternatives></inline-formula> (<inline-formula><tex-math id="M17">\begin{document}$ =-{\mu }_{{\mathrm{m}}}/({k}_{{\mathrm{B}}}T) $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M17.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M17.png"/></alternatives></inline-formula>) are obtained under the condition <i>α</i><1. It is the biggest different from previous researches that our theory establishes a nonlinear relationship between the chemical potential and the nonequilibrium particle density <inline-formula><tex-math id="M18">\begin{document}$ \delta {n}_{{\mathrm{m}}}\propto -{\alpha }^{1/2}\propto $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M18.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M18.png"/></alternatives></inline-formula><inline-formula><tex-math id="M18-1">\begin{document}$ -{(-{\mu }_{{\mathrm{m}}})}^{1/2} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M18-1.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M18-1.png"/></alternatives></inline-formula> for magnons under <i>α</i><inline-formula><tex-math id="Z-20240629142100">\begin{document}$\ll 1 $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_Z-20240629142100.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_Z-20240629142100.png"/></alternatives></inline-formula>. For a large chemical potential, higher-order terms of <i>α</i> must be taken into account. Owing to this nonlinear relationship, the magnon diffusion equation markedly differs from that governing electron spin,which evolves into more complex nonlinear differential equation. We specifically focus on the ferrimagnetic insulator YIG by making a comparison of the spatial distribution of the nonequilibrium magnon density <inline-formula><tex-math id="M19">\begin{document}$ \delta {n}_{m} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M19.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M19.png"/></alternatives></inline-formula> and chemical potential <inline-formula><tex-math id="M20">\begin{document}$ {\mu }_{m} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M20.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M20.png"/></alternatives></inline-formula> between two extreme temperature gradients, namely, <inline-formula><tex-math id="M21">\begin{document}$ \nabla T \sim 1\;{\mathrm{K}}/{\mathrm{m}}{\mathrm{m}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M21.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M21.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M22">\begin{document}$ {10}^{4}\;{\mathrm{K}}/{\mathrm{m}}{\mathrm{m}}, $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M22.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M22.png"/></alternatives></inline-formula> which correspond to <inline-formula><tex-math id="M23">\begin{document}$ {\mu }_{{\mathrm{m}}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M23.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M23.png"/></alternatives></inline-formula> values on the order of <inline-formula><tex-math id="M24">\begin{document}$ -0.1\;{\text{μ}}{\mathrm{e}}{\mathrm{V}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M24.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M24.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M25">\begin{document}$ -6.2\;{\mathrm{m}}{\mathrm{e}}{\mathrm{V}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M25.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M25.png"/></alternatives></inline-formula>, respectively, while still satisfying the prerequisite <i>α</i> < 1. Given the known temperature gradient distribution, the nonequilibrium magnon density <inline-formula><tex-math id="M26">\begin{document}$ \delta {n}_{{\mathrm{m}}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M26.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M26.png"/></alternatives></inline-formula> calculated based on our theory is in good agreement with the experimental result. Our theoretical and numerical findings greatly contribute to a profound understanding of the nonequilibrium magnon transport characteristics in magnetic insulators.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3