Nonequilibrium steady-state transport properties of magnons in ferromagnetic insulators
-
Published:2024
Issue:14
Volume:73
Page:147101
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Yang Dong-Chao,Yi Li-Zhi,Ding Lin-Jie,Liu Min,Zhu Li-Ya,Xu Yun-Li,He Xiong,Shen Shun-Qing,Pan Li-Qing,John Q. Xiao, , , ,
Abstract
Understanding nonequilibrium transport phenomena in bosonic systems is highly challenging. Magnons, as bosons, exhibit different transport behavior from fermionic electron spins. This study focuses on the key factors influencing the nonequilibrium transport of magnons in steady states within magnetic insulators by taking Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> (YIG) for example. By incorporating the Bose-Einstein distribution function with a non-zero chemical potential <inline-formula><tex-math id="M15">\begin{document}$ {\mu }_{m} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M15.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M15.png"/></alternatives></inline-formula> into the Boltzmann transport equation, analytical expressions for transport parameters in power of <inline-formula><tex-math id="M16">\begin{document}$ \alpha $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M16.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M16.png"/></alternatives></inline-formula> (<inline-formula><tex-math id="M17">\begin{document}$ =-{\mu }_{{\mathrm{m}}}/({k}_{{\mathrm{B}}}T) $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M17.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M17.png"/></alternatives></inline-formula>) are obtained under the condition <i>α</i><1. It is the biggest different from previous researches that our theory establishes a nonlinear relationship between the chemical potential and the nonequilibrium particle density <inline-formula><tex-math id="M18">\begin{document}$ \delta {n}_{{\mathrm{m}}}\propto -{\alpha }^{1/2}\propto $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M18.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M18.png"/></alternatives></inline-formula><inline-formula><tex-math id="M18-1">\begin{document}$ -{(-{\mu }_{{\mathrm{m}}})}^{1/2} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M18-1.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M18-1.png"/></alternatives></inline-formula> for magnons under <i>α</i><inline-formula><tex-math id="Z-20240629142100">\begin{document}$\ll 1 $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_Z-20240629142100.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_Z-20240629142100.png"/></alternatives></inline-formula>. For a large chemical potential, higher-order terms of <i>α</i> must be taken into account. Owing to this nonlinear relationship, the magnon diffusion equation markedly differs from that governing electron spin,which evolves into more complex nonlinear differential equation. We specifically focus on the ferrimagnetic insulator YIG by making a comparison of the spatial distribution of the nonequilibrium magnon density <inline-formula><tex-math id="M19">\begin{document}$ \delta {n}_{m} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M19.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M19.png"/></alternatives></inline-formula> and chemical potential <inline-formula><tex-math id="M20">\begin{document}$ {\mu }_{m} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M20.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M20.png"/></alternatives></inline-formula> between two extreme temperature gradients, namely, <inline-formula><tex-math id="M21">\begin{document}$ \nabla T \sim 1\;{\mathrm{K}}/{\mathrm{m}}{\mathrm{m}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M21.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M21.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M22">\begin{document}$ {10}^{4}\;{\mathrm{K}}/{\mathrm{m}}{\mathrm{m}}, $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M22.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M22.png"/></alternatives></inline-formula> which correspond to <inline-formula><tex-math id="M23">\begin{document}$ {\mu }_{{\mathrm{m}}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M23.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M23.png"/></alternatives></inline-formula> values on the order of <inline-formula><tex-math id="M24">\begin{document}$ -0.1\;{\text{μ}}{\mathrm{e}}{\mathrm{V}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M24.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M24.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M25">\begin{document}$ -6.2\;{\mathrm{m}}{\mathrm{e}}{\mathrm{V}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M25.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M25.png"/></alternatives></inline-formula>, respectively, while still satisfying the prerequisite <i>α</i> < 1. Given the known temperature gradient distribution, the nonequilibrium magnon density <inline-formula><tex-math id="M26">\begin{document}$ \delta {n}_{{\mathrm{m}}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M26.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20240498_M26.png"/></alternatives></inline-formula> calculated based on our theory is in good agreement with the experimental result. Our theoretical and numerical findings greatly contribute to a profound understanding of the nonequilibrium magnon transport characteristics in magnetic insulators.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Reference28 articles.
1. Bauer G E W, Saitoh E, van Wees B J 2012 Nat. Mater. 11 391
2. Chumak A V, Vasyuchka V I, Serga A A, Hillebrands B 2015 Nat. Phys. 11 453
3. Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B, Slavin A N 2006 Nature 443 430
4. Uchida K, Xiao J, Adachi H, et al. 2010 Nat. Mater. 9 894
5. Maehrlein S F, Radu I, Maldonado P, et al. 2018 Sci. Adv. 4 eaar5164