Non-contact viscoelasticity measurements based on impulsive stimulated Brillouin spectroscopy

Author:

Li Jia-Rui,Le Tao-Ran,Wei Hao-Yun,Li Yan,

Abstract

The mechanical properties of cells and tissues play a crucial role in determining biological functions. As a label-free and non-contact mechanical imaging method, Brillouin spectroscopy can characterize viscoelastic changes in samples with high spatial resolution. To sensitively identify small mechanical differences among biological systems, it is important to improve Brillouin scattering efficiency while combining various viscoelastic contrast mechanisms in measurement. This paper presents a high-speed Brillouin spectroscopy based on impulsive stimulated Brillouin scattering. The acoustic oscillation can be excited in a single shot with a pulsed pump laser and detected by a continuous probe laser in the time domain. This time-domain signal can then be transferred to the frequency-domain Brillouin spectrum with high precision. With this method, various viscoelastic information including sound velocity, sound attenuation coefficient, elastic longitudinal storage modulus, and loss modulus can be obtained simultaneously based on derived spectral information. Owing to stimulated scattering and time-domain detection, spectra with a signal-to-noise ratio of 26 dB can be achieved within a millisecond-level spectral integration time. The average measurement precision for storage modulus and loss modulus of the longitudinal elastic modulus are 0.1% and 1%, respectively. With this method, the Brillouin spectra and viscoelastic parameters of typical liquids and polymer materials are measured and compared, providing a comprehensive reference for viscoelastic parameters. We also study the elastic changes in different curing stages of PDMS and make a comparison of viscoelasticity with agarose gel. Moreover, six edible oils are identified based on various viscoelastic contrast mechanisms, which not only provides a new perspective for material identification but also expands the measurement capabilities of Brillouin spectroscopy and enhances the sensitivity of viscoelasticity measurements.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3