Effect of flow direction on heat transfer and flow characteristics of supercritical carbon dioxide

Author:

Cheng Liang-Yuan,Xu Jin-Liang, ,

Abstract

This work is devoted to investigating the difference in flow and heat transfer characteristics between vertical upward flow and horizontal flow of supercritical carbon dioxide (<inline-formula><tex-math id="Z-20240119215215">\begin{document}$\rm sCO_2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20231142_Z-20240119215215.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20231142_Z-20240119215215.png"/></alternatives></inline-formula>) based on the pseudo-boiling theory and the experimental parameters: mass flux <i>G</i> = 496–1100 kg/m<sup>2</sup>s, heat flux <i>q</i><sub>w</sub> = 54.4–300.2 kW/m<sup>2,</sup> and pressure <i>P</i> = 7.531–20.513 MPa. The differences in flow and heat transfer characteristics between horizontal upward tube and vertical upward tube are compared at different mass fluxes, heat fluxes and pressures fully. Finally, unlike the classical treatment of flow and heat transfer for supercritical fluid, single-phase fluid assumption is abandoned, instead, the pseudo-boiling theory is introduced to deal with the flow transfer and heat transfer of <inline-formula><tex-math id="Z-20240119215113">\begin{document}$\rm sCO_2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20231142_Z-20240119215113.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20231142_Z-20240119215113.png"/></alternatives></inline-formula> in the two tubes. Supercritical fluid is regarded as a multiphase structure in this work, including a vapor-like layer near the wall and a liquid-like fluid in tube core. The results are indicated below. 1) In terms of heat transfer, the inner-wall temperature of the vertical upward tube and the bottom generatrix of horizontal tube are basically the same under normal heat transfer mode. When the heat transfer deterioration occurs in the vertical upward tube, larger supercritical boiling number (<i>SBO</i>) will cause the wall temperature peak of the vertical upward tube to be much higher than the wall temperature at top generatrix of the horizontal tube at the corresponding enthalpy. The <i>SBO</i> (<i>SBO</i> = 5.126×10<sup>–4</sup>) distinguishes between normal heat transfer deterioration and heat transfer deterioration in the vertical upward tube. In the horizontal tubes, <i>SBO</i> dominates the maximum wall temperature difference between the top generatrix and the bottom generatrix. Comparing with vertical upward tubes, higher <i>q</i><sub>w</sub>/<i>G</i> is required for the heat transfer deterioration of supercritical fluid in the horizontal tubes under the same pressure. 2) In terms of flow, the increase in slope of pressure drop in the vertical upward tube is due to the orifice contraction effect. The mechanism that dominates the variation of pressure drop in the horizontal tube is the flow stratification effect, and we show that Froude number <i>Fr</i><sub>ave</sub> can be the similarity criterion number to connect the temperature difference between the top and bottom generatrix of horizontal tube and the pressure drop. The analysis suggests that mechanisms governing horizontal flow and vertical flow of <inline-formula><tex-math id="Z-20240119215057">\begin{document}$\rm sCO_2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20231142_Z-20240119215057.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20231142_Z-20240119215057.png"/></alternatives></inline-formula> are different in heat transfer deterioration mode. For the vertical flow, the <i>SBO</i> plays a leading role, while for the horizontal flow, the <i>Fr</i> plays an indispensable role.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference39 articles.

1. Duffey R, Pioro I, Zhou X, Zirn U, Kuran S, Khartabil H, Naidin M 2008 Proceedings of the 16th International Conference on Nuclear Engineering Orlando, FL, USA, May 11–15, 2008 p9

2. Cheng X, Schulenberg T 2001 Karlsruhe Research Centre of Technology and Environment (Karlsruhe, Germany) p12

3. Martinez A, Duchateau J L, Mardion G B, Gauthier A, Rousset B 1994 Cryogenics 34 591

4. Dadashev M, Stepanov G 2000 Chem. Technol. Fuels Oils 36 8

5. Yamada T, Haraguchi N, Hihara E, Wang J 2005 Therm. Sci. Eng. 13 93

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3