Author:
Hou Yu-Mei,Chen Wei,Zou Yun-Peng,Yu Li-Ming,Shi Zhong-Bing,Duan Xu-Ru,
Abstract
The beta-induced Alfvén eigenmodes (BAEs) with frequency chirping, observed in the HL-2A Tokamak, are analysed by a MHD-kinetic hybrid code MEGA. Realistic parameters are applied to the code, such as equilibrium, electron density and temperature, ion temperature, which is different from the kinetic Berk-Breizman theory. The BAEs are observed by Mirnov probes and soft X-ray arrays. Toroidal and porloidal mode number are confirmed to be <i>n</i>/<i>m</i> = 2/3 by using the phase shift method with toroidal filtered Mirnov signal arrays. And the soft X-ray arrays’ signal shows that BAEs are located at the core of the plasma and they have a relatively broad mode structure. The BAEs with up- and down-chirping are reproduced with MEGA code. The simulation results of mode structure accord well with experimental observations. Compared with up-chirping BAEs, the down-chirping BAEs are excited with higher plasma parameters and beta value, thus the energetic ion distribution in pitch angle has a broader width, and the beta value of energetic ions in the core of plasma and diffusion value are higher in the down-chirping simulation. The simulation results show that the phase space distribution of energetic ions affects the wave chirping direction. The energetic ions parallel to the magnetic field drive the up-chirping behavior. When the down-chirping behavior dominates, the density of energetic ions perpendicular to the magnetic field increases significantly. It shows that the down-chirping BAEs require higher beta and energetic ion density, which is consistent with the previous simulation result.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy