Research on variation test of atomic time based on pulsar observation

Author:

Han Meng-Na,Tong Ming-Lei, ,

Abstract

Pulsar time (PT) has high long-term stability, and its establishment process is completely different from that of atomic time (AT). Therefore, pulsar-based time scale can be used as an independent test for the fluctuation of atomic time scale. In this paper, the test results of the fluctuation of atomic time using pulsar time are presented in combination with the real clock difference data. In order to test the fluctuation of atomic time, the timing model parameters of four pulsars are used to simulate the pulse times of arrival (TOAs) data with TT(BIPM19) as the reference, and then the reference time is changed from TT(BIPM19) to TT(TAI). Based on this, the classical weighted average algorithm and the Wiener filtering algorithm are used to extract the variations of the atomic time relative to the pulsar time. The test results obtained by the two methods are compared, and it shows that the Wiener filtering algorithm is better than the weighted average algorithm for the extraction of the fluctuation of the atomic time. The wavelet threshold denoising method is added to the clock difference signal extracted by the Wiener filtering algorithm to deduct the high-frequency noise. After denoising, PT is closer to TT(BIPM19), which further improves the ability of PT to detect the fluctuation of AT. For the TOA measurement accuracy of 100 ns, the difference between PT and TT(BIPM19) can be kept roughly within 40 ns. This paper studies the method of further improving the accuracy of PT under the premise of given TOA measurement accuracy, which is of great significance for the next step to use PT for more effective application of time keeping.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference38 articles.

1. Allan D W 1987 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 647

2. Panfilo G, Arias E F 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 140

3. Kaplan G H 2006 arXiv: 0602086[astro-ph]

4. Guinot B 1988 Astron. Astrophys. 192 370

5. Petit G 2003 Proceedings of the 35th Annual Precise Time and Time Interval Systems and Applications Meeting San Diego, California, December 2–4, 2003 p317

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3