Generalized isometric tensor based quantum key distribution protocols of squeezed multiphoton entangled states

Author:

Lai Hong,

Abstract

Isometric tensor offers a novel and powerful tool that can compress an entangled state into its tensor network state (TNS). The resulting quantum compression provides a new opportunity for enhancing quantum key distribution (QKD) protocols. The main idea explored in this work is to use the quantum compression to improve the efficiency of QKD. In a nut-shell, a collection of any multi-photon entangled states that carry encoded classical bits is compressed into a single-photon state before the corresponding photon is sent to the receiver that measures the qubit and decompresses it. In this paper, we first show how to obtain the generalized isometric tensors for compressing any entangled states and their inverse isometric tensors for decompression. In our proposed QKD protocol, the input state consists of any multi-photon entangled states, which are first compressed into a single-photon state <inline-formula><tex-math id="M7">\begin{document}$ \left| 0 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M7.png"/></alternatives></inline-formula> or <inline-formula><tex-math id="M8">\begin{document}$ \left| 1 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M8.png"/></alternatives></inline-formula> or Bell states by the sender Alice. A sequence of single-photon states <inline-formula><tex-math id="M9">\begin{document}$ \left| 0 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M9.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ \left| 1 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M10.png"/></alternatives></inline-formula> and one photon from the Bell state mixed with decoy qubits is sent to the receiver Bob via a quantum channel. Bob obtains the final sifted compressed states <inline-formula><tex-math id="M11">\begin{document}$ \left| 0 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M11.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M12">\begin{document}$ \left| 1 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M12.png"/></alternatives></inline-formula> and conjugate transpose of the isometric tensors. Using our protocols, Bob can decompress the received states <inline-formula><tex-math id="M13">\begin{document}$ \left| 0 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M13.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M14">\begin{document}$ \left| 1 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230589_M14.png"/></alternatives></inline-formula> into original entangled states. Since quantum processors that are used to send quantum information between nodes are relatively primitive and low in power and the preparation of many-photon entanglement is relatively difficult at present, finding suitable protocols for the compression of transmitted quantum data brings important practical benefits. More generally, the quantum information theory primarily investigates quantum data manipulation under locality constraints, so our protocols connect naturally to these investigations. Our protocols increase the encoding capacity of QKD protocols. Not only our proposed processes of compression and decompression are very simple, but also entanglement compression using isometric tensors can be implemented by using quantum circuits and current technology. Because many ideas for designing of quantum information processing equipment envision that a network composed of relatively small quantum processors sending quantum information between nodes, it is greatly significant to find appropriate protocols for compressing the transmitted quantum data .

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3