Effects of trimodal random magnetic field on spin dynamics of quantum Ising chain

Author:

Yuan Xiao-Juan,

Abstract

<sec>It is of fundamental importance to know the dynamics of quantum spin systems immersed in external magnetic fields. In this work, the dynamical properties of one-dimensional quantum Ising model with trimodal random transverse and longitudinal magnetic fields are investigated by the recursion method. The spin correlation function <inline-formula><tex-math id="M2">\begin{document}$C\left( t \right) = \overline {\left\langle {\sigma _j^x\left( t \right)\sigma _j^x\left( 0 \right)} \right\rangle } $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M2.png"/></alternatives></inline-formula> and the corresponding spectral density <inline-formula><tex-math id="M3">\begin{document}$\varPhi \left( \omega \right) = \displaystyle\int_{ - \infty }^{ + \infty } {{\rm{d}}t{{\rm{e}}^{{\rm{i}}\omega t}}C\left( t \right)}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M3.png"/></alternatives></inline-formula> are calculated. The model Hamiltonian can be written as</sec><sec><inline-formula><tex-math id="M4">\begin{document}$ H = - \dfrac{1}{2}J\displaystyle\sum\limits_i^N {\sigma _i^x\sigma _{i + 1}^x} - \dfrac{1}{2}\displaystyle\sum\limits_i^N {{B_{iz}}\sigma _i^z} - \dfrac{1}{2}\sum\limits_i^N {{B_{ix}}\sigma _i^x} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M4.png"/></alternatives></inline-formula>,</sec><sec>where <inline-formula><tex-math id="M5">\begin{document}$\sigma _i^\alpha \left( {\alpha = x,y,z} \right)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M5.png"/></alternatives></inline-formula> are Pauli matrices at site <inline-formula><tex-math id="M6">\begin{document}$ i $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M6.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$J$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M7.png"/></alternatives></inline-formula>is the nearest-neighbor exchange coupling. <inline-formula><tex-math id="M8">\begin{document}$ {B_{iz}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M8.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ {B_{ix}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M9.png"/></alternatives></inline-formula> denote the transverse and longitudinal magnetic field, respectively. They satisfy the following trimodal distribution,</sec><sec><inline-formula><tex-math id="M10">\begin{document}$ \rho \left( {{B_{iz}}} \right) = p\delta ({B_{iz}} - {B_p}) + q\delta ({B_{iz}} - {B_q}) + r\delta ({B_{iz}}) $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M10.png"/></alternatives></inline-formula>,</sec><sec><inline-formula><tex-math id="M11">\begin{document}$ \rho \left( {{B_{ix}}} \right) = p\delta ({B_{ix}} - {B_p}) + q\delta ({B_{ix}} - {B_q}) + r\delta ({B_{ix}}). $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M11.png"/></alternatives></inline-formula></sec><sec>The value intervals of the coefficients <inline-formula><tex-math id="M12">\begin{document}$p$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M12.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M13">\begin{document}$q$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M13.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M14">\begin{document}$r$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M14.png"/></alternatives></inline-formula> are all [0,1], and the coefficients satisfy the constraint condition <inline-formula><tex-math id="M15">\begin{document}$ p + q + r = 1 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M15.png"/></alternatives></inline-formula>.</sec><sec>For the case of trimodal random <inline-formula><tex-math id="M16">\begin{document}$ {B_{iz}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M16.png"/></alternatives></inline-formula> (consider <inline-formula><tex-math id="M17">\begin{document}$ {B_{ix}} \equiv 0 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M17.png"/></alternatives></inline-formula> for simplicity), the exchange couplings are assumed to be <inline-formula><tex-math id="M18">\begin{document}$J \equiv 1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M18.png"/></alternatives></inline-formula> to fix the energy scale, and the reference values are set as follows: <inline-formula><tex-math id="M19">\begin{document}$ {B_p} = 0.5 < J $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M19.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M20">\begin{document}$ {B_q} = 1.5 > J $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M20.png"/></alternatives></inline-formula>. The coefficient <inline-formula><tex-math id="M21">\begin{document}$r$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M21.png"/></alternatives></inline-formula> can be considered as the proportion of non-magnetic impurities. When <inline-formula><tex-math id="M22">\begin{document}$r = 0$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M22.png"/></alternatives></inline-formula>, the trimodal distribution reduces into the bimodal distribution. The dynamics of the system exhibits a crossover from the central-peak behavior to the collective-mode behavior as <inline-formula><tex-math id="M23">\begin{document}$q$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M23.png"/></alternatives></inline-formula> increases, which is consistent with the value reported previously. As <inline-formula><tex-math id="M24">\begin{document}$r$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M24.png"/></alternatives></inline-formula> increases, the crossover between different dynamical behaviors changes obviously (e.g. the crossover from central-peak to double-peak when <inline-formula><tex-math id="M25">\begin{document}$r = 0.2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M25.png"/></alternatives></inline-formula>), and the presence of non-magnetic impurities favors low-frequency response. Owing to the competition between the non-magnetic impurities and transverse magnetic field, the system tends to exhibit multi-peak behavior in most cases, e.g. <inline-formula><tex-math id="M26">\begin{document}$r = 0.4$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M26.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M26.png"/></alternatives></inline-formula>, 0.6 or 0.8. However, the multi-peak behavior disappears when <inline-formula><tex-math id="M27">\begin{document}$r \to 1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M27.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M27.png"/></alternatives></inline-formula>. That is because the system's response to the transverse field is limited when the proportion of non-magnetic impurities is large enough. Interestingly, when the parameters satisfy <inline-formula><tex-math id="M28">\begin{document}$ q{B_q} = p{B_p} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M28.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M28.png"/></alternatives></inline-formula>, the central-peak behavior can be maintained. What makes sense is that the conclusion is universal.</sec><sec>For the case of trimodal random <inline-formula><tex-math id="M29">\begin{document}$ {B_{ix}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M29.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M29.png"/></alternatives></inline-formula>, the coefficient <inline-formula><tex-math id="M30">\begin{document}$r$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M30.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M30.png"/></alternatives></inline-formula> no longer represents the proportion of non-magnetic impurities when <inline-formula><tex-math id="M31">\begin{document}$ {B_{ix}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M31.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M31.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M32">\begin{document}$ {B_{iz}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M32.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M32.png"/></alternatives></inline-formula> (<inline-formula><tex-math id="M33">\begin{document}$ {B_{iz}} \equiv 1 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M33.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M33.png"/></alternatives></inline-formula>) coexist here. In the case of weak exchange coupling, the effect of longitudinal magnetic field on spin dynamics is obvious, so <inline-formula><tex-math id="M34">\begin{document}$J \equiv 0.5$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M34.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M34.png"/></alternatives></inline-formula> is set here. The reference values are set below: <inline-formula><tex-math id="M35">\begin{document}$ {B_p} = 0.5 \lt {B_{iz}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M35.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M35.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M36">\begin{document}$ {B_q} = 1.5 \gt {B_{iz}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M36.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M36.png"/></alternatives></inline-formula>. When <inline-formula><tex-math id="M37">\begin{document}$r$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M37.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M37.png"/></alternatives></inline-formula> is small (<inline-formula><tex-math id="M38">\begin{document}$r = 0$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M38.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M38.png"/></alternatives></inline-formula>, 0.2 or 0.4), the system undergoes a crossover from the collective-mode behavior to the double-peak behavior as <inline-formula><tex-math id="M39">\begin{document}$q$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M39.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M39.png"/></alternatives></inline-formula> increases. However, the low-frequency responses gradually disappear, while the high-frequency responses are maintained as <inline-formula><tex-math id="M40">\begin{document}$r$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M40.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M40.png"/></alternatives></inline-formula> increases. Take the case of <inline-formula><tex-math id="M41">\begin{document}$ r = 0.8 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M41.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M41.png"/></alternatives></inline-formula> for example, the system only presents a collective-mode behavior. The results indicate that increasing <inline-formula><tex-math id="M42">\begin{document}$r$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M42.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M42.png"/></alternatives></inline-formula> is no longer conducive to the low-frequency response, which is contrary to the case of trimodal random <inline-formula><tex-math id="M43">\begin{document}$ {B_{iz}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M43.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M43.png"/></alternatives></inline-formula>. The <inline-formula><tex-math id="M44">\begin{document}$r$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M44.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M44.png"/></alternatives></inline-formula> branch only regulates the intensity of the trimodal random <inline-formula><tex-math id="M45">\begin{document}$ {B_{ix}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M45.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20230046_M45.png"/></alternatives></inline-formula>. Our results indicate that using trimodal random magnetic field to manipulate the spin dynamics of the Ising system may be a new try.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference38 articles.

1. Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432

2. Zhao Z Y, Liu X G, He Z Z, Wang X M, Fan C, Ke W P, Li Q J, Chen L M, Zhao X, Sun X F 2012 Phys. Rev. B 85 134412

3. Cui Y, Zou H, Xi N, He Z, Yang Y X, Shu L, Zhang G H, Hu Z, Chen T, Yu R, Wu J and Yu W 2019 Phys. Rev. Lett. 123 067203

4. Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307

5. Dmitriev D V, Krivnov V Y 2004 Phys. Rev. B 70 144414

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3