Mesoscopic study on effect of electric field and heater characteristics on saturated pool boiling heat transfer

Author:

Hu Jian,Zhang Sen,Lou Qin, ,

Abstract

The phase change lattice Boltzmann (LB) model combined with the electric field model is employed to investigate the heat transfer performance of saturated pool boiling. Particular attention is paid to the influence of heater surface wettability and heater length on bubble behaviors, including generation, merging, and fracture during boiling in a uniform electric field. Moreover, the effects of the bubble behavior on heat transfer performance are also investigated. The study results indicate that the enhancement of boiling heat transfer by the electric field is dependent on both the heater length and the wettability. In the case of a hydrophilic surface, when the heater length <inline-formula><tex-math id="M5">\begin{document}$L_H^*\leqslant 6.25$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230341_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230341_M5.png"/></alternatives></inline-formula>, the bubble interaction force generated on the heater surface during boiling is weak due to the small size of the heater. Thus the effect of a uniform electric field on the bubble dynamic behaviors is mainly manifested by reducing the bubble size. As a result, the whole boiling phase is suppressed in this case. In the case of <inline-formula><tex-math id="M6">\begin{document}$6.25 < L_H^*\leqslant9.375$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230341_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230341_M6.png"/></alternatives></inline-formula>, the uniform electric field enhances the critical heat flux (CHF), and the enhancement degree increases with electric field strength increasing. This can be attributed to the longer heater providing sufficient space for bubble generation, resulting in increased bubble nucleation sites and stronger interaction forces between bubbles. On the other hand, the distance between adjacent bubbles increases with the heater length increasing,thus further contributing to the improved CHF percentage. When <inline-formula><tex-math id="M7">\begin{document}$L_H^*>9.375$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230341_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230341_M7.png"/></alternatives></inline-formula>, the rewetting resistance increases with heater length increasing. So the vapor generated in the boiling process is prone to be closely adhered to the heating surface under the action of electric field force, forming a thin layer of vapor on the heater surface. The vapor not only increases the heat transfer thermal resistance between the solid and the fluid but also creates no vortex near the bubble. This is not conducive to the movement of the bubble to the middle of the heater, thereby slowing down the heat mass exchange between the hot fluid on the heating surface and the colder fluid on both sides. As a result, the improved percentage of CHF decreases gradually with the increase in the heater length. In the case of hydrophobic surfaces, the increased percentage of CHF initially increases with heater length increasing and then decreases. However, comparing with the hydrophilic surface, the increase of the heater source length corresponds to the beginning of the decrease of critical heat flux.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference40 articles.

1. Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401
张海松, 徐进良, 朱鑫杰 2021 物理学报 70 044401

2. Cao C L, He X T, Ma X Q, Xu J L 2021 Acta Phys. Sin. 70 134703
曹春蕾, 何孝天, 马骁婧, 徐进良 2021 物理学报 70 134703

3. Zeng J B, Li L J, Liao Q, Jiang F M 2011 Acta Phys. Sin. 60 066401
曾建邦, 李隆键, 廖全, 蒋方明 2011 物理学报 60 066401

4. Gong S, Cheng P 2015 Int. J. Heat Mass Transfer 85 635

5. Lou A Q, Wang H, Li L 2023 Phys. Fluids 35 013316

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3