Nonreciprocal transmission characteristics in double-cavity double-optomechanical system

Author:

Liu Ni,Ma Shuo,Liang Jiu-Qing, ,

Abstract

<sec>Optical non-reciprocal devices such as the isolators are quite important components in optical systems. To realize the non-reciprocal transmission of the light, the Lorenz reciprocity theorem must be broken first and the main method is that Faraday magnetic rotation effect is used to change the polarization state of the signal through magneto-optical materials. However, this method is difficult to achieve on-chip integration. So using optomechanical system is presented to overcome the difficulty.</sec><sec>In order to improve the isolation characteristics of the device, a double-cavity double-optomechanical system, which is coupled to two optical modes by two mechanical oscillators with two different optomechanical coupling strengths, is proposed. Driven by the red detuning field in such a system, the non-reciprocal phenomenon can be realized by regulating the phase difference, and the direction of light transmission and isolation can be determined as well. This property is determined by the quantum interference effect between the optomechanical coupling strengths and the couplings of the optical cavity modes. The method is that the relative operators are represented by their average value plus their relative fluctuations, and then according to the input-output relationship the transmission amplitude and the isolation rate are obtained.</sec><sec>We mainly discuss the distribution of the isolation rate as a function of the optomechanical coupling strength. The results are that the combined action of two mechanical modes can make the system have higher fault tolerance rate. The other mechanical mode can make the system achieve a large isolation rate at two specific frequencies and the reverse transmission in the resonant frequency signals at the same time.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3