Gaussian beam tracing for three-dimensional sound propagation problems in subsonic moving medium

Author:

Chen Yu-Chen,Zhang Hai-Gang,Zhang Ming-Hui,Yang Shi-E, , ,

Abstract

The study of sound propagation in moving medium is important in various fields, such as atmospheric sound and underwater acoustics. To address this problem, a three-dimensional Gaussian beam tracing model is developed for subsonic moving medium, based on the Helmholtz equation of velocity potential for high-frequency sound wave in a moving medium with arbitrary Mach numbers. The dynamic ray equations in the moving medium are derived by using the beam tracing method, and further the partial differential equation is transformed into ordinary differential equations, so as to be able to more efficiently and accurately calculate the three-dimensional sound field in the moving medium. The Gaussian beam tracing method reveals that the expansion of the beam in a moving medium is more complex than in a static medium, and the energy in the ray tube is not necessarily conserved. The model is applied to several problems, including point source sound propagation in a semi-infinite homogeneous medium, three-dimensional long-range sound propagation in horizontally layered atmospheres, and three-dimensional sound propagation in the Gulf Stream. The results of the point source sound propagation problem in the semi-infinite homogeneous medium verify the effectiveness and accuracy of the model. The results of the atmospheric sound propagation problem indicate that compared with the commonly used <i>N</i> × 2D method, the three-dimensional Gaussian beam tracing in a moving medium fully considers the effect of medium motion, especially the effect of crosswind, and can calculate the sound pressure field more accurately. Although the Mach number of the ocean current is very small, its effect cannot be ignored. The ocean current can quantitatively change the sound propagation mode and affect the convergence zone position. In some areas, the difference between calculation results with and without considering the ocean current is more than 5 dB. Moreover, the deviation of rays caused by lateral flow is much smaller, and even in the areas with complex terrain, the deviation becomes more obvious only after being reflected by the interface. Moreover, the influence of lateral flow on sound propagation is much smaller than that caused by flow velocity parallel to the propagation direction. In conclusion, the developed Gaussian beam tracing method provides an accurate and efficient approach for solving the sound propagation problem in subsonic moving media.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3