Tri-level resistive switching characteristics and conductive mechanism of HfO<sub>2</sub>/NiO<sub><i>x</i></sub>/HfO<sub>2</sub> stacks

Author:

Chen Tao,Zhang Tao,Yin Yuan-Xiang,Xie Yu-Sha,Qiu Xiao-Yan, ,

Abstract

<sec>With the extensive integration of portable computers and smartphones with “Internet of Things” technology, further miniaturization, high reading/writing speed and big storage capacity are required for the new-generation non-volatile memory devices. Compared with traditional charge memory and magnetoresistive memory, resistive random access memory (RRAM) based on transition metal oxides is one of the promising candidates due to its low power consumption, small footprint, high stack ability, fast switching speed and multi-level storage capacity.</sec><sec>Inspired by the excellent resistive switching characteristics of NiO and HfO<sub>2</sub>, NiO<sub><i>x</i></sub> films are deposited by magnetron sputtering on the Pt<inline-formula><tex-math id="Z-20230629144836">\begin{document}$\langle111\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230629144836.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230629144836.png"/></alternatives></inline-formula> layer and the polycrystalline HfO<sub>2</sub> film, respectively. Their microstructures, resistive switching characteristics and conductive mechanisms are studied. X-ray diffractometer data show the <inline-formula><tex-math id="Z-20230629144852">\begin{document}$\langle111\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230629144852.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230629144852.png"/></alternatives></inline-formula> preferred orientation for the NiO<sub><i>x</i></sub> film deposited on the Pt<inline-formula><tex-math id="Z-20230629144904">\begin{document}$\langle111\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230629144904.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230629144904.png"/></alternatives></inline-formula> layer but the <inline-formula><tex-math id="Z-20230629144913">\begin{document}$\langle100\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230629144913.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230629144913.png"/></alternatives></inline-formula> preferred one for the film deposited on the polycrystalline HfO<sub>2</sub> layer. X-ray photoelectron depth profile of Ni 2p core level reveals that the NiO<sub><i>x</i></sub> film is the mixture of oxygen-deficient NiO and Ni<sub>2</sub>O<sub>3</sub>. NiO<sub><i>x</i></sub>(111) films show bipolar resistive switching (RS) characteristics with a clockwise current-voltage (<i>I-V</i>) loop, but its ratio of the high resistance to the low resistance (<i>R</i><sub>H</sub>/<i>R</i><sub>L</sub>) is only ~10, and its endurance is also poor. The NiO<sub><i>x</i></sub>(200)/HfO<sub>2</sub> stack exhibits bipolar RS characteristics with a counterclockwise <i>I-V</i> loop. The <i>R</i><sub>H</sub>/<i>R</i><sub>L</sub> is greater than 10<sup>4</sup>, the endurance is about 10<sup>4</sup> cycles, and the retention time exceeds 10<sup>4</sup> s. In the initial stage, the HfO<sub>2</sub>/NiO<sub><i>x</i></sub>(200)/HfO<sub>2</sub> stack shows similar bi-level RS characteristics to the NiO<sub><i>x</i></sub>(200)/HfO<sub>2</sub> stack. However, in the middle and the last stages, its <i>I-V</i> curves gradually evolve into tri-level RS characteristics with a “two-step Setting process” in the positive voltage region, showing potential applications in multilevel nonvolatile memory devices and brain-like neural synapses. Its <i>I-V</i> curves in the high and the low resistance state follow the relationship of ohmic conduction (<inline-formula><tex-math id="Z-20230714031758-1">\begin{document}$ I \propto V $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230714031758-1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230714031758-1.png"/></alternatives></inline-formula>), while the <i>I-V</i> curves in the intermediate resistance state are dominated by the space-charge-limited-current mechanism (<inline-formula><tex-math id="Z-20230714031758-2">\begin{document}$ I \propto V^2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230714031758-2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20230331_Z-20230714031758-2.png"/></alternatives></inline-formula>). The tri-level RS phenomena are attributed to the coexistence of the oxygen-vacancy conductive filaments in the NiO<sub><i>x</i></sub>(200) film and the space charge limited current in the upper HfO<sub>2</sub> film.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3