Near-field and far-field scanning terahertz spectroscopy based on photoconductive microprobe

Author:

Xu Yue-Hong ,Zhang Xue-Qian ,Wang Qiu ,Tian Zhen ,Gu Jian-Qiang ,Ouyang Chun-Mei ,Lu Xin-Chao ,Zhang Wen-Tao ,Han Jia-Guang ,Zhang Wei-Li , , ,

Abstract

Recently, terahertz radiation has been a branch of cutting-edge science and technology involving many fields such as public security, military defense and national economy. In the past, far-field measurements were widely carried out based on terahertz time-domain spectroscopy. But the spatial resolution is limited by far-field diffraction effect. In order to break diffraction limit and gain sub-wavelength spatial resolution in terahertz frequency region, a series of near-field detection methods came into being, such as confocal microscopy, using an aperture, guided mode, scattering, direct detection in the near-field, etc. Each method has its own advantages and disadvantages. Using the photoconductive-antenna tip is one of the direct detection methods and it delivers the possibility of near-field measurements of terahertz waves. In this method, the photoconductive-antenna tip is a tapered photoconductive tip probe. So it can be close enough to the sample surface and receive the near-field signal on the basis of principle of photoconductivity. In this way, high spatial resolution can be gained. In this article, we introduce our recent progress of near-field and far- field scanning terahertz spectroscopy system with photoconductive-antenna in detail. Firstly, we analyze and summarize the near-field detection methods that have been developed in these years. And then, using the femtosecond laser whose center wavelength is 800 nm and the photoconductive-antenna tip detector coupled with fiber, we construct fiber near-field/ far-field scanning terahertz spectroscopy (N/F-STS). The frequency bandwidth is in a range from 0.2 THz to 1.5 THz and the terahertz spot is circular and uniform indicated by performance test. Also the amplitude and phase of the terahertz field are recorded simultaneously. It has the ability to perform three-dimension scan in various experiment conditions conveniently. Finally, we introduce the real applications in our laboratory. N/F-STS can be used to scan spatial electric distribution in three dimensions and test the spectral properties in terahertz range like other traditional far-field methods. Nevertheless, the most importantly, N/F-STS is used to scan the terahertz near-field of samples, such as terahertz surface plasmon polaritons, etc. The presented method thus is useful in some application areas, such as metamaterials, graphene, surface plasmons, waveguide transmission, near-field imaging, biological test, and chip inspection.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Method of Human Sperm Head Imaging Based on Terahertz Scattering Near-Field Imaging Technology;2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC);2023-11-10

2. Research on terahertz real-time near-field spectral imaging;Acta Physica Sinica;2022

3. Review of DNA Detection and Application Based on THz Spectroscopy;Laser & Optoelectronics Progress;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3