Global analysis of stochastic bifurcation in permanent magnet synchronous generator for wind turbine system

Author:

Yang Li-Hui ,Ge Yang ,Ma Xi-Kui ,

Abstract

The permanent magnet synchronous generator (PMSG) for wind turbine system operating under inevitable stochastic disturbance from wind power is a nonlinear stochastic dynamical system. With the random interaction and nonlinearity, the intense nonlinear stochastic oscillation is likely to happen in such a system, causing the system to be unstable or even collapse. However, the PMSG is usually considered as a deterministic system when analyzing its nonlinear dynamic behaviors in the past researches. Such a simplification can lead to wrong predictions for the system stability and reliability. This paper aims to discuss the effect of the stochastic disturbance on the nonlinear dynamic behavior of the PMSG. Based on the derived PMSG model considering the stochastic disturbance from the input mechanical torque, the evolution of the system global structure with the stochastic intensity is investigated using the generalized cell mapping digraph method. Meanwhile, the occurrence process and development process of the stochastic bifurcation are illustrated. Based on this global analysis, the intrinsic mechanism for the effect of the stochastic disturbance on the operating performances of the PMSG is revealed. Finally, the numerical simulations based on the Euler-Maruyama algorithm are carried out to validate the results of the theoretical analysis. The results present that as the intensity of the stochastic disturbance increases, two kinds of stochastic bifurcations can be observed in the PMSG system according to the definition of a sudden change in characteristic of the stochastic attractor. One is the stochastic interior crisis that occurs when a stochastic attractor collides with a stochastic saddle in its attraction basin interior, leading to the abrupt increase of the attractor and the disappearance of the saddle. This kind of bifurcation results in the intense stochastic oscillation and instability of the PMSG system. Another stochastic bifurcation is the stochastic boundary crisis which occurs when a stochastic attractor collides with the boundary of its attraction basin and results in the disappearance of the attractor. This sudden change of the number of stochastic attractors induces the stable solution set to vanish and thus the PMSG system to collapse. In a word, even the stochastic disturbance with small intensity may lead to the complete destruction of the stable structure of the PMSG, inducing the system to suffer a strong disordered oscillation or the operation to collapse. The results of this paper can provide significant theoretic reference for both practically operating and designing the PMSG for wind turbine systems.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference25 articles.

1. Zhang B, Li Z, Mao Z Y, Pang M X 2001 Proc. CSEE 21 13 (in Chinese)[张波, 李忠, 毛宗源, 庞敏熙 2001 中国电机工程学报 21 13]

2. Xue W, Guo Y L, Chen Z Q 2009 Acta Phys. Sin. 58 8146 (in Chinese)[薛薇, 郭彦岭, 陈增强 2009 物理学报 58 8146]

3. Wei D Q, Luo X S, Fang J Q, Wang B H 2006 Acta Phys. Sin. 55 54 (in Chinese)[韦笃取, 罗晓曙, 方锦清, 汪秉宏 2006 物理学报 55 54]

4. Rasoolzadeh A, Tavazoei M S 2012 Phys. Lett. A 377 73

5. Yang G L, Li H G 2009 Acta Phys. Sin. 58 7552 (in Chinese)[杨国良, 李惠光 2009 物理学报 58 7552]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3