Preparation of poly(methyl methacrylate)-zinc oxide hybrid nanoparticles via miniemulsion polymerization

Author:

Metanawin Tanapak,Charoenchan Maneerat,Metanawin Siripan

Abstract

The encapsulation of zinc oxide (ZnO) nanoparticles with poly(methyl methacrylate) in the presence of triethylene glycol dimethacrylate (TEGDMA) as a crosslinking agent was synthesized by the miniemulsion polymerization technique. The ZnO as a catalyze was varied from 1 wt% - 7 wt%. Several techniques were used to analyze the PMMA/TEGDMA/ZnO hybrid. The morphology and particle size distribution of the PMMA hybrid was observed using a field emission scanning electron microscope (FE-SEM). The diameter of the PMMA/TEGDMA/ZnO hybrid was in the range of 57 nm to 115 nm. The morphology of the PMMA/ZnO hybrids was sphere-shaped with a narrow particle size distribution and no agglomeration of the hybrids occurred. The encapsulation and crystalline structure of the PMMA ZnO hybrid were determined using a high-resolution transmission electron microscope (HR-TEM). The HR-TEM image demonstrated that the ZnO was encapsulated in the PMMA hybrid. In addition, the high magnification of the TEM image demonstrated the lattice spacing of ZnO and the diffraction mode image presented the crystalline structure of ZnO. Therefore, the photocatalytic properties of the PMMA/ZnO hybrid were examined via the degradation of methylene blue (MB) solution under dark and UV-A irradiation. It was found that the photocatalytic activities of the PMMA/ZnO hybrid increased when the ZnO content increased up to 7 wt%. The maximum MB degradation for PMMA/TEGDMA/ZnO 7 wt% and PMMA/ZnO 7 wt% were 80.1 % and 77.6 %, respectively. Thus, the photocatalytic efficiency of the PMMA/ZnO increased in the presence of TEGDMA as a crosslinking agent.

Publisher

Rajamangala University of Technology Thanyaburi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3