Analysis on Food Crispness Based on Time and Frequency Domain Features of Acoustic Signal

Author:

Chen Li,Ding Jianfeng

Abstract

Crispness is an important indicator of crunchy food. However, it cannot be easily quantified by sensory evaluation, due to the high subjectivity of evaluators; instrument measurement of this indicator requires much manpower and time. To improve the efficiency of food crispness prediction, this paper attempts to build a rapid, convenient, and accurate crispness analysis model. Starting with the fracturing sound of crunchy food, the authors collected the fracturing acoustic signal, conducted wavelet denoising, analyzed the eigenvalues in time and frequency domains, and constructed crispness prediction models based on multiple linear regression (MLR) and neural network, respectively. Through fracturing test and acoustic test, cluster analysis was adopted to select the typical eigenvalues of acoustic signal, including the peak amplitude of power spectral density (PSD) curve, amplitude difference, and waveform index. Based on these eigenvalues, a crispness analysis model was established, and used to predict the crispness of four kinds of food, namely, potato, sweet potato, carrot, and turnip. The results show that the BP neural network had a smaller relative error than the MLR; when the threshold was 5%, the BP neural network maintained a prediction accuracy of >90%, and achieved 100% prediction accuracy on two types of food. To sum up, this paper reveals the relationship between the food chewing sound features and food quality, laying the theoretical basis for the research of food chewing sound mechanism.

Funder

Science and Technology Research Planning Project, Department of Education, Jilin Province, China

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3