Classification of Remote Sensing Images Through Reweighted Sparse Subspace Representation Using Compressed Data
Author:
Zhu Jianchen,Zhao Shengjie,Wu Di
Abstract
In many real-world scenarios, subspace clustering essentially aims to cluster unlabeled high-dimensional data into a union of finite-dimensional linear subspaces. The problem is that the data are always high-dimensional, with the increase of the computation, storge, and communication of various intelligent data-driven systems. This paper attempts to develop a method to cluster spectral images directly using the measurements of compressive coded aperture snapshot spectral imager (CASSI), eliminating the need to reconstruct the entire data cube. Assuming that compressed measurements are drawn from multiple subspaces, a novel algorithm was developed by solving a 1-norm minimization problem, which is known as reweighted sparse subspace clustering (RSSC). The proposed algorithm clusters the compressed measurements into different subspaces, which greatly improves the clustering accuracy over the SSC algorithm by adding a reweighted step. The compressed CASSI measurements obtained using the coherence-based coded aperture can improve the performance of the proposed spectral image clustering method. The accuracy of our spectral image clustering approach was verified through simulations on two real datasets.
Funder
National Natural Science Foundation of China
National Key Research and Development Project
Fundamental Research Funds for the Central Universities
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献