Depression Detection Based on Geometrical Features Extracted from SODP Shape of EEG Signals and Binary PSO

Author:

Akbari Hesam,Sadiq Muhammad Tariq,Payan Malih,Esmaili Somayeh Saraf,Baghri Hourieh,Bagheri Hamed

Abstract

Late detection of depression is having detrimental consequences including suicide thus there is a serious need for an accurate computer-aided system for early diagnosis of depression. In this research, we suggested a novel strategy for the diagnosis of depression based on several geometric features derived from the Electroencephalography (EEG) signal shape of the second-order differential plot (SODP). First, various geometrical features of normal and depression EEG signals were derived from SODP including standard descriptors, a summation of the angles between consecutive vectors, a summation of distances to coordinate, a summation of the triangle area using three successive points, a summation of the shortest distance from each point relative to the 45-degree line, a summation of the centroids to centroid distance of successive triangles, central tendency measure and summation of successive vector lengths. Second, Binary Particle Swarm Optimization was utilized for the selection of suitable features. At last, the features were fed to support vector machine and k-nearest neighbor (KNN) classifiers for the identification of normal and depressed signals. The performance of the proposed framework was evaluated by the recorded bipolar EEG signals from 22 normal and 22 depressed subjects. The results provide an average classification accuracy of 98.79% with the KNN classifier using city-block distance in a ten-fold cross-validation strategy. The proposed system is accurate and can be used for the early diagnosis of depression. We showed that the proposed geometrical features are better than extracted features in the time, frequency, time-frequency domains as it helps in visual inspection and provide up to 17.56% improvement in classification accuracy in contrast to those features.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3