Automatic Modulation Classification Using a Support Vector Machine-Based Pattern Recognition Algorithm

Author:

P. G. Varna Kumar Reddy,M. Meena

Abstract

Modulation format recognition is an essential part of intelligent receivers of wireless communication systems, especially for adaptive radio systems (ARS). This paper presents a detailed investigation of automatic modulation classification (AMC) using pattern recognition classifiers (PRC) under fading and AWGN conditions. A variety of classifiers with different kernel functions and Support Vector Machine (SVM) classifiers have been developed for the classification of higher-order digital modulation signals. In addition, an extensive investigation of the extraction of various higher-order statistical features from each of the modulated classes and the choice of appropriate features for training classifiers are presented. In addition, the performance of the SVM classifier is evaluated under a variety of training rates and suboptimal channel conditions. Further, the performance of SVM classifiers is compared to that of existing techniques to demonstrate the effectiveness of the SVM classifiers for modulation categorization.

Publisher

International Information and Engineering Technology Association

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3