A Hybrid Lightweight 1D CNN-LSTM Architecture for Automated ECG Beat-Wise Classification

Author:

Obeidat Yusra,Alqudah Ali Mohammad

Abstract

In this paper we have utilized a hybrid lightweight 1D deep learning model that combines convolutional neural network (CNN) and long short-term memory (LSTM) methods for accurate, fast, and automated beat-wise ECG classification. The CNN and LSTM models were designed separately to compare with the hybrid CNN-LSTM model in terms of accuracy, number of parameters, and the time required for classification. The hybrid CNN-LSTM system provides an automated deep feature extraction and classification for six ECG beats classes including Normal Sinus Rhythm (NSR), atrial fibrillation (AFIB), atrial flutter (AFL), atrial premature beat (APB), left bundle branch block (LBBB), and right bundle branch block (RBBB). The hybrid model uses the CNN blocks for deep feature extraction and selection from the ECG beat. While the LSTM layer will learn how to extract contextual time information. The results show that the proposed hybrid CNN-LSTM model achieves high accuracy and sensitivity of 98.22% and 98.23% respectively. This model is light and fast in classifying ECG beats and superior to other previously used models which makes it very suitable for embedded systems designs that can be used in clinical applications for monitoring heart diseases in faster and more efficient manner.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3