Author:
Obeidat Yusra,Alqudah Ali Mohammad
Abstract
In this paper we have utilized a hybrid lightweight 1D deep learning model that combines convolutional neural network (CNN) and long short-term memory (LSTM) methods for accurate, fast, and automated beat-wise ECG classification. The CNN and LSTM models were designed separately to compare with the hybrid CNN-LSTM model in terms of accuracy, number of parameters, and the time required for classification. The hybrid CNN-LSTM system provides an automated deep feature extraction and classification for six ECG beats classes including Normal Sinus Rhythm (NSR), atrial fibrillation (AFIB), atrial flutter (AFL), atrial premature beat (APB), left bundle branch block (LBBB), and right bundle branch block (RBBB). The hybrid model uses the CNN blocks for deep feature extraction and selection from the ECG beat. While the LSTM layer will learn how to extract contextual time information. The results show that the proposed hybrid CNN-LSTM model achieves high accuracy and sensitivity of 98.22% and 98.23% respectively. This model is light and fast in classifying ECG beats and superior to other previously used models which makes it very suitable for embedded systems designs that can be used in clinical applications for monitoring heart diseases in faster and more efficient manner.
Publisher
International Information and Engineering Technology Association
Subject
Electrical and Electronic Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献