Challenges and Limitations in Human Action Recognition on Unmanned Aerial Vehicles: A Comprehensive Survey

Author:

Othman Nashwan Adnan,Aydin Ilhan

Abstract

An Unmanned Aerial Vehicle (UAV), commonly called a drone, is an aircraft without a human pilot aboard. Making UAVs that can accurately discover individuals on the ground is very important for various applications, such as people searches, and surveillance. UAV integration in smart cities is challenging, however, because of problems and concerns such as privacy, safety, and ethical/legal use. Human action recognition-based UAVs can utilize modern technologies. Thus, it is essential for future development of the aforementioned applications. UAV-based human activity recognition is the procedure of classifying photo sequences with action labels. This paper offers a comprehensive study of UAV-based human action recognition techniques. Furthermore, we conduct empirical research studies to assess several factors that might influence the efficiency of human detection and action recognition techniques in UAVs. Benchmark datasets commonly utilized for UAV-based human action recognition are briefly explained. Our findings reveal that the existing human action recognition innovations can identify human actions on UAVs with some limitations in range, altitudes, long-distance, and a large angle of depression.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3