Methods for the Determination of the Heat Transfer Coefficient in Air Cooled Condenser Used at Biomass Power Plants

Author:

Camaraza-Medina Yanán

Abstract

In the present work, its show a summary of functional relationships developed for the application of dry condensation systems to Biomass Power Plants that present difficulties with access to water for condensation. The bibliographic review reveals the limitations of the analyzed works, in terms of the development of mathematical models and empirical correlations that allow evaluating the simultaneous effects of the surrounding meteorological variables on the average coefficient of heat transfer and the effect on the environment of the use of dry condensation. The analytical study is based on the weak solutions and their correlation with experimental quantities available in research already established in the area of action, a procedure is developed for the calculation of the average coefficients of heat transfer that includes the influence of local climatologically variables, the effect of the spatial distribution of the tubes package on the refrigerant and the confined confinement in inclined components, which increase the reliability of the thermo-hydraulic analysis and suppresses the need for the use of excess areas required by current methods. The proposed models and correlations allow the preparation of a procedure, by means of which all the possible operative variants are evaluated.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3