Determination of Two Homogeneous Materials in a Bar with Solid-Solid Interface

Author:

Umbricht Guillermo Federico,Tarzia Domingo Alberto,Rubio Diana

Abstract

In this work, a bar fully insulated on its lateral surface. composed by two different unknown materials is considered. For the analytical solution, it is assumed a perfectly assembly solid-solid interface, so no heat loss due to friction is present. This is an ideal scenario, so this loss and possible measurement errors are included by simulating noisy data for the estimation of the thermal conductivity of the unknown materials. A stationary heat transfer process along the bar is considered where a Dirichlet condition is imposed at the left that represents a source of constant temperature. At the other end of the bar, a Robin condition that models heat dissipation by convection, is assumed. The constant thermal conductivity coefficients of both solids are determined under two different situations: a) two noisy temperature measurements are available, one at the interface and the other at the right boundary; b) a temperature measurement at the interface and a heat flow measurement at the right edge of the bar are given. The bounds for the errors in the identification of the unknown coefficients are obtained based on the data measurements, the room temperature and temperature values at the boundary and interface. Numerical examples are given to illustrate the ideas used for the parameter identification and elasticity analysis is carried out to measure the dependence of the data on the estimated parameters.

Funder

SOARD/AFOSR

European Union's Horizon 2020 Research and Innovation Programme

PIP from CONICET-UA, Rosario, Argentina

Publisher

International Information and Engineering Technology Association

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3