Analysis and Simulation of Hydromagnetic Nano-Fluid Flow Passing an Inclined Heated Sheet

Author:

Uka Uchenna A.,Agbo Kelvin O.,Omamoke Ekakitie,Amos Emeka,Keneke Edwin D.

Abstract

The examination of nano-fluid in recent time has been encouraging just as its research interest cuts across some disciplines such as mathematics, mechanical, chemical, civil engineering, physics, earth and natural sciences. Its applicability in the industrial and technological advancement helps in controlling the rate at which heat is conducted and diffuses in a given medium, as well as improving thermal transportation through convection, radiation and conduction. In this work, the analysis of hydromagnetic nano-fluid flow past an inclined heated surface with temperature dependent non-uniform heat source/sink and thermal radiation under heat and mass transmission perspective is considered. Adequate similarity variables are employed in recovering the nonlinear coupled ordinary differential equations (ODEs) from the partial differential equations (PDEs) which describe the equation of the boundary layer. The transformed equations (ODEs) are addressed both analytically and numerically with the aid of regular series approximation technique and Wolfram Mathematica package. The numerically simulated obtained results are graphically presented with legends. The computations opined that velocity declines while energy increases as the magnetic field number enhances. Similarly, improvement on angle of inclination, breeds velocity deceleration. Furthermore, the rate of energy transfer increases as the temperature dependent non-uniform parameters due to thermal generation enhances. In addition, the nanoparticle concentration decreases with increasing values of Schmidt and thermal radiation factors.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3