Heart Disease Detection Based on Feature Fusion Technique with Augmented Classification Using Deep Learning Technology

Author:

Saikumar Kayam,Rajesh Vullanki,Babu Bulepe Sankara

Abstract

An accurate prediction of cardiac disease is a crucial task for medical and research organizations. Cardiac patients are usually facing heart attacks sometimes tends to death. Therefore, a prior stage of heart diagnosis is compulsory, so that model of optimal Deep learning technology is prosperous for the healthcare sector. The earlier models related to this research work are outdated, some applications cannot provide efficient outcomes. The available conventional models like the Genetic algorithm (GA), PSO (particle swarm optimization), RFO (Random Forest optimization), X-boosting. KNN and many available technologies are only dispensing abnormality information but they are not providing location, depth, and affected area dimensions. Moreover, earlier models only supported fixed scanning in radiology not supporting cloud-level deployment. The sensitivity and robustness of diagnosis are very low therefore a DCAlexNet CNN deep learning technology is needed. The deep learning-based classification is performed through the DCAlexNet CNN (convolutional Neural networks) technique. The implementing application is loading training samples from Kaggle or ANDI dataset. The uploaded image samples are pre-processed through resolution, intensity, and brightness adjustment in the python NumPy tool. The. CSV file (text file) is processed through clustering as well as dimensionality adjusting technique. The processed images are segmented through RRF (Restrictive Random Field) technology. The segmentation on images provides features that are loaded in the local server after that saved into CNN memory. Now the .csv file and trained features are applied to DCAlexNet CNN deep learning architecture. The training processing can give information about diseases in the heart and dimensionality of the affected area (depth and location). Now the application is waiting for real-time samples which is nothing but testing, in this testing part locally available affected and healthy heart ultrasound images are given to DCAlexNet CNN. The designed application can easily be identified whether the uploaded image has abnormality or not. The test-based and image-oriented feature fusion can help the application detect heart abnormalities in an easy way. To this feature fusion-based DCAlexNet CNN confusion matrix generates performance measures like accuracy 98.67%, sensitivity 97.45%, Recall 99.34%, and F1 Score 99.34%, these numerical comparison results compete with present technology and outperformance application robustness.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3