Effect of Silicon and Retained Austenite on the Liquid Metal Embrittlement Cracking Behavior of GEN3 and High-Strength Automotive Steels

Author:

TUMULURU MURALI,

Abstract

GEN3 steels are a new family of automotive sheet steels developed and commercialized in the last three years, specifically for body-in-white applications. The high ductility in GEN3 steels is typically achieved through the transformation-induced plasticity (TRIP) effect by the addition of silicon or aluminum. When these steels are formed into parts, the TRIP effect of austenite to martensite transformation provides enhanced ductility. Typically, 10 to 12 micrometers of zinc coating (known as galvanized coating) is applied to automotive steel sheets for corrosion protection. Liquid metal embrittlement (LME) cracking can occur during resistance spot welding (RSW) of galvanized steels. LME cracking occurs when molten zinc penetrates prior austenite grain boundaries of the steel substrate. The precise role of silicon in the LME cracking behavior in TRIP and GEN3 steels is unknown. Therefore, a study was undertaken to examine the role of silicon in LME cracking behavior of GEN3 steels. The purpose was also to examine if the presence of retained austenite is required for LME cracking to occur. In this study, laboratory heats were prepared using three silicon levels. Samples cut from galvanized panels were welded using a resistance spot welding machine, and weld areas were examined metallographically for the presence of LME cracks. Gleeble® simulations were done to study the LME behavior of the three steels prepared. Base materials were examined with a scanning electron microscope using the electron back-scattered diffraction (EBSD) method to examine the nature of grain boundaries found. The effect of retained austenite in LME cracking was studied using the Gleeble®. Both RSW and Gleeble® results showed silicon promotes LME cracking in steels, predominantly in the weld heat-affected zones(HAZs). More low-energy, low-coincidence site lattice (CSL) boundaries were found as the silicon content of the steel was decreased. These boundaries do not host cracks. Higher silicon appeared to shrink the safe temperature range over which LME cracks could be avoided, thus indicating heat in-put control to limit cracks has limited windows as the silicon in steel goes up. It was shown that the presence of retained austenite in steel is not a prerequisite for LME cracking to occur.

Publisher

American Welding Society

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3