Interactive Phenomena in Hybrid KPAW–GMAW-P

Author:

WU DONGSHENG, ,TASHIRO SHINICHI,WU ZIANG,TANAKA MANABU,NOMURA KAZUFUMI,HUA XUEMING

Abstract

A hybrid welding technique formed by combining keyhole plasma arc welding (KPAW) and pulsed gas metal arc welding (GMAW-P) is characterized by the complex interactions of the arc, droplet, keyhole, and weld pool. With the help of a high-speed video camera, zirconia particles, and a thermal camera, the complex interactive phenomena of the hybrid KPAW–GMAW-P process was analyzed. Owing to the formation of a direct-current path between the KPAW cathode (tungsten electrode) and the GMAW anode (welding wire), the ionized plasma arc was extended to the GMA side, causing an expansion of the GMA. The current at the GMAW droplet was diverged; thus, the Lorentz force promoted a more stable one pulse one droplet metal transfer mode compared with that of GMAW-P. The strong backward flow from the keyhole was suppressed because of the pull-push flow pattern on the top surface of the weld pool be-tween the two arcs. As the heat and molten metal in the weld pool were transported from the region near the GMA (high temperature) to the region near the plasma arc (low temperature), the weld pool temperature decreased.

Publisher

American Welding Society

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3