Characterization of As-Welded Microstructure in a P91 Steel

Author:

,MARZOCCA ANA LUCÍA,DANÓN CLAUDIO ARIEL,LUPPO MARÍA INÉS,SOLDERA FLAVIO,ZALAZAR MÓNICA

Abstract

The microstructure of the heat affected zone (HAZ) and fusion zone (FZ) in the as-welded condition of a single-pass weld performed by the flux-cored arc welding (FCAW) process was studied in a P91 steel using microhardness measurements, field-emission scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. The evolution of precipitates in each region of the single-pass weld was analyzed, and particular attention was paid to the presence of retained austenite (RA). Experimental observations indicated that M23 C6 carbide played a major role in the thermal cycle associated with the weldment. On one hand, the dissolution of M23 C6 led to the precipitation of spherical NbCN in the finegrained HAZ (FGHAZ) near the coarse-grained HAZ (CGHAZ). On the other hand, the total or partial dissolution of M23 C6 carbides changed the chemical composition of the initially formed austenite. In the regions where the M23 C6 carbides were completely dissolved (i.e., the CGHAZ and FZ), retained austenite was observed as a thin, continuous film along primary austenite grains and lath boundaries. Instead, a shell of retained austenite was observed around some partially dissolved M23 C6 of the intercritical HAZ (ICHAZ) and FGHAZ.

Publisher

American Welding Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3