Applications of Wireline Formation Testing: A Technology Update

Author:

Partouche Ashers1,Yang Bo1,Tao Chen1,Sawaf Tamim1,Xu Lina1,Nelson Keith1,Chen Hua1,Dindial Deo1,Edmundson Simon1,Pfeiffer Thomas1

Affiliation:

1. Schlumberger

Abstract

Abstract Wireline formation testing has evolved from discrete pressure measurements, introduced in the 1950s to measuring pressure gradients and fluid contacts since the 1970s. Technology introduced in the late 1980s and onwards added interval pressure transient testing, focused sampling, and downhole fluid analysis. Thirty years later, this paper shows data examples of a recently developed formation testing platform in a wide range of environments, and applications, that change how we plan, acquire, and use formation testing. The dual-flow-line architecture of the formation testing platform is designed to systematically address shortcomings of legacy technology, enabling focused sampling in the tightest conventional formations, as well as transient testing in high mobility environments. Specialized pre-job planning software evaluates conveyance options to minimize friction and borehole contact, estimates the available flow rate, compares cleanup performance of the different inlets, and simulates transient testing responses. During the operation, the platform uses hardware embedded automation algorithms that execute routine tasks in a consistent and highly efficient manner, leaving more time for the user to focus on data quality and value of the measurements. Case studies from Mexico, Norway, and the US demonstrate specific improvements in capability and performance. Field data from Mexico shows focused sampling of gas condensate from a heterogeneous submillidarcy carbonate formation in an HP/HT well drilled with oil-based mud. Controlled downhole decompression of crude oil in the flowline at a sampling station in Norway enabled real-time measurement of its bubblepoint pressure to within 6 psi of that measured in the laboratory. Another case study integrates accurate relative asphaltene gradients into an existing reservoir fluid study to prove reservoir connectivity across a large lateral distance in a producing field. Application of the dual packer subsystem demonstrates inflation within four minutes and pure oil samples within 90 minutes on station in a 1.5-md/cp fractured basement formation. The fine pump control at a low rate enabled sampling just below reservoir pressure in Alaska and a case from the Gulf of Mexico demonstrates the real-time impact of fluid properties on the understanding of reservoir architecture and completion design. The presented examples highlight the impact of downhole automation, define the new operating envelope for formation testing in the most challenging environments, and highlight how the technology development leads to decision making on a broad reservoir scale by providing contextual answers rather than an accumulation of facts and figures.

Publisher

OTC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3