Model Test Experience on Vortex Induced Vibrations of Truss Spars

Author:

van Dijk Radboud1,Magee Allan2,van Perryman Steve3,van Gebara Joe2

Affiliation:

1. Maritime Research Institute Netherlands

2. Technip Offshore Inc.

3. BP America

Abstract

Abstract In order to evaluate the Vortex Induced Vibration (VIV) response of truss Spars and to optimize their strake configuration several model test programs have been carried out at MARIN. The results show that it is possible to optimize the strake design of Spars to obtain minimum VIV-response. The results of the model tests also suggest that modeling details, such as appendages, can have an influence on the Vortex Induced Vibrations. In order to reliably predict the full-scale VIV-behavior of the prototype Spar these details must therefore be accurately represented on the model. Furthermore, damping of attached structures such as the truss on a truss Spar can significantly contribute to the reduction of VIV. Loads on such structures have been measured in the model tests. An important aspect that needs consideration in VIV model testing is effect of model scale on the Reynolds number. Roughness can be added to the hard tank of the Spar to minimize scale effects. The paper discusses possible scale effects and the effect of hull roughness on model test results. The repeatability of VIV model tests and reliability of these tests in representing the full-scale situation is discussed. The effect of Spar heading with respect to the current direction as well as current speed will be discussed. Introduction Since 1996 Spars have been used as production platforms in the Gulf of Mexico. Vortex Induced Vibrations (VIV) of the Spar are an important consideration in mooring system design. The Vortex Induced Vibrations of Spars are typically reduced by adding helical strakes to the Spar hull. The effectiveness of the strakes must be verified in the design stage of the Spar. At present numerical tools are not capable of accurately predicting VIV-behavior of Spars. Model tests are therefore currently the most practical method to verify and optimize the strake design. A new development in Spar design is the so-called truss-Spar (Refs 1 & 2). In order to evaluate the VIV-behavior of this type of Spars dedicated model tests have been conducted on several truss Spars. Vortex Induced Vibrations A blunt structure placed in a flow (either air or water) will experience an oscillating force due to the shedding of vortices. This phenomenon is studied and discussed extensively (e.g. Ref. 3). If this structure is able to move in the flow Vortex Induced Vibrations (VIV) can occur. The predominant direction of these motions is transverse to the direction of the flow. Large steady state type oscillations occur when the vortex shedding frequency coincides with a natural frequency of the structure. This is known as 'lock-in'. For offshore structures these vortex induced vibrations could add to the fatigue damage of mooring and risers, shortening the total fatigue life and also increase the overall drag on the structure. Experience has shown that in offshore structures cylindrical objects such as risers, calm buoys and Spars are most susceptible to VIV, but also other shapes can exhibit VIV-behavior.

Publisher

OTC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3