Design of a 750 °F, 15 K packer for Enhanced Geothermal Systems, Supercritical CO2 - Sequestration and SAGD: Energy Transition Through Technology Synthesis

Author:

Roy Ting1,Ben Naceur Kamel2,Singh Manjinder3,Markel Daniel1,Harp Leonard1,Ardic Hifzi1,Wilkinson Christian1,Roy Indranil1

Affiliation:

1. DAMORPHE

2. DAMORPHE, NOMADIA

3. HEXPOL

Abstract

Abstract Several technology building blocks are required for the growth of geothermal energy to match what is needed to enable the energy transition. One key technology required in this field is a reliable packer that can withstand the extreme environments frequently seen in geothermal wells: elevated temperatures (750°F/400°C); high differential pressures (up to 15K psi); and extremely corrosive fluids. The authors present a concept which is thought to offer a promising solution to this challenge. It builds upon the wealth of experience obtained by operators designing packers for the oil and gas wells and couples this with advancements in materials processing technology in elastomers, composites, and metals. The presented concept uses the sealing advantages that elastomers are known to offer, with a compound specifically designed by a strategic partner. This elastomer is then surrounded by a layer of flexible gel-insulation of extremely low thermal conductivity to shield it from the intense heat seen in geothermal wells. It is predicted that the elastomer core will see temperatures no higher than 400°F when the surrounding environment is at 750°F. The system is then encased in a Grain Boundary Engineered (GBE) nano-metallic flexible skin material to prevent contact with corrosive fluids. Though the elements are the greatest challenge, the other components of the packer design are also specially designed with material processing techniques tailored to both enhance mechanical properties and corrosion resistance. The technology behind the design is detailed and has been proven. The integrated concepts will be further tested at subcomponent level to show their merit, before integration into a full system for qualification to 750°F, 15K psi.

Publisher

OTC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3