Realization of the MonoDiameter Well: Evolution of a Game-Changing Technology

Author:

Dupal Kenneth1,Campo Donald B.2,Andrews Colley J.3,Cook R. Lance4,Ring Lev M.4,York Patrick L.4

Affiliation:

1. Shell Deepwater Development

2. Shell International E&P

3. Chesapeake Energy Corporation

4. Enventure Global Technology

Abstract

Abstract Solid expandable tubulars have been used to assist in the success and slimming of deepwater wellbores over the past two years. The expandable openhole liner system expands and seals the outside diameter of an expandable casing against the inside diameter of a string of conventionally set casing, thus slimming the wellbore compared to conventionally cased wellbores. Further slimming of wellbores was realized with the capability of expanding and sealing sequentially installed expandable casing strings, or "nested" expandable liners. This procedure decreases reduction of a typical hole size by approximately 50%. Nesting was the next step in the evolution of creating a monodiameter system, that is, a wellbore that has the same inside diameter from surface to total depth (TD). The first nesting of two expanded casings in a well was successfully completed in a drilling application in the Summer of 2001, a milestone toward creation of the monodiameter wellbore. Using nested expandable systems facilitates the employment of smaller, more economical drilling vessels to drill deepwater wells (wells drilled in water depths of 1,500 to 10,000 ft). The monodiameter system is created when the junctions of the nested expanded casing liners are "over-expanded, resulting in a single internal diameter (ID) wellbore. This type of well exhibits the ultimate diametric efficiencies" a constant ID from the top of the well to its TD. The first monodiameter "over-expanded" sealed liner overlap was produced in the lab in late 2000, opening the door for the creation of the monodiameter drill liner, followed by the production-quality monodiameter liner system. This paper reviews the evolutionary steps taken to date toward the realization of true monodiameter technology and discusses the installations that have served as milestones. This paper also discusses the potential savings realized when wellbores are slimmed using expandable systems, combined with more economic drilling vessels and the associated reduced spread-rates. Technical Evolution Solid expandable tubular technology essentially changes how to install the main load-carrying member around which all well designs are built, namely, the casing. The monodiameter system became a feasible idea with the advent of successfully expanding solid tubulars. This revolutionary concept was proven with the successful expansion of solid tubulars (initially automotive steel) by forcing an expansion cone through the tubular with hydraulic pressure and expanding it ?20%. After demonstrating conceptual proof, attention turned to refining the existing materials to address specific downhole conditions. These developments consisted of replicating desired automotive steel properties in Oil Country Tubular Goods (OCTG), changing the cone material makeup from a combination of ceramic and steel to one of all steel, and replacing welded connections with specially threaded, expandable connections. L-80 casing was developed with exceptional fracture toughness in order to achieve consistent success of expansion without pipe body failure.

Publisher

OTC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3