Calcium Carbonate Formation within the Oil and Gas Workflow: A Combined Thermodynamic, Kinetic and CFD Modeling Approach

Author:

Poletto V. G.1,Neubauer T. M.1,Mazuroski M. E.1,De Lai F. C.1,Junqueira S. L. M.1,Pinheiro H. E. S.2,Castro B. B.2,Martins A. L.2

Affiliation:

1. Research Center for Rheology and Non-Newtonian Fluids, CERNN, Federal University of Technology - Parana, UTFPR, Curitiba, Parana, Brazil

2. Leopoldo Americo Miguez de Mello Research Center, CENPES, Petrobras, Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

Abstract The formation and deposition of inorganic salts on industrial equipment surfaces pose significant financial and technological challenges for various industries, particularly the oil industry, due to the transportation of multiphase fluids such as water, oil, and gas under high temperature, pressure, and salinity. (Crabtree, M., Eslinger, D., Fletcher, P., Miller, M., Johnson, A., King, 1999; Kamal et al., 2018a). These conditions can bring significant challenges in scale control, especially for calcium carbonate scaling, which is a scale type that can be vulnerable to pressure and temperature variations (Blue et al., 2017; Cosmo, 2013a; Du & Amstad, 2019). To ensure optimal scale control and surveillance, smart completions have emerged as one of the most favorable approaches in the oil and gas industry. These completions offer real-time and selective zone control in oil and gas wells, minimizing unwanted water production and maximizing oil and gas production. They allow operators to isolate or produce specific zones, controlling or preventing mixing of incompatible water chemistries. Additionally, smart completions provide water shutoff capabilities, allowing operators to remotely control valves and downhole tools to shut off water-producing zones. This feature significantly reduces the undesirable production of water, commonly encountered during oil or gas production in mature reservoirs (Bouamra et al., 2020; H. F. L. L. Santos et al., 2017). However, the design, size, and geometry of the smart completion tool can impact the prevention of scaling deposition. As a result, there is a need to investigate operating conditions and equipment design that can promote the formation and deposition of precipitates within the oil production process (Kamal et al., 2018a; Sanni et al., 2022). To address this issue, a novel mathematical methodology has been developed to predict precipitation rates along the oil and gas workflow within these smart completions. A complete simulation of the particles, characterizing the kinetic, thermodynamic, and fluid-dynamic aspects of the CaCO3 produced within the fluids produced in the oil and gas industry, could be used as a virtual sensor for potential analysis, control and monitoring of incrustation problems, offering a more complete tool than the pure thermodynamic simulations that are usually used as prediction tools by the oil and gas industry (Bouamra et al., 2020; Lassin et al., 2018; T. Neubauer et al., 2022; Sanni et al., 2015). The proposed methodology involves the use of calcium carbonate thermodynamics, kinetics, and flow dynamics along the production flow to assess the risk of CaCO3 precipitation. The simulation workflow combines a polymorphic population model to define the CaCO3 particle kinetics, a multiphase thermodynamic model to simulate supersaturation conditions, and computational fluid dynamics to produce the pressure and fluid flow profiles along the equipment. The combined simulation of the three models produces kinetic and thermodynamic precipitation rates that are used to obtain a CaCO3 risk index. This work describes the model calculations to assess calcium carbonate formation in an open-hole completion assembled with a perforated liner composed of multiple tiny, drilled holes along the production tubing.

Publisher

OTC

Reference25 articles.

1. Chemical and physical controls on the transformation of amorphous calcium carbonate into crystalline CaCO3 polymorphs;Blue;Geochimica et Cosmochimica Acta,2017

2. Scaleprotect - Scale deposition modeling in pre-salt reservoir;Bouamra;Offshore Technology Conference Brasil 2019,2020

3. ChemInform Abstract: On Calcium Carbonates: From Fundamental Research to Application;Brecevic;ChemInform,2008

4. A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways;Donnet;Journal of Colloid and Interface Science,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3